al VAl LR,

NVIDIA CUDA Software and GPU
Parallel Computing Architecture

David B. Kirk, Chief Scientist

Outline

® Applications of GPU Computing

® CUDA Programming Model Overview
® Programming in CUDA — The Basics
® How to Get Started!

® Exercises / Examples Interleaved with Presentation
Materials
® Homework for later ©

© NVIDIA Corporation 2006-2008

Future Science and Engineering S nvIDIZ
Breakthroughs Hinge on Computing

e w%” ‘_:<(}

o % Computational a5 . Computational
AN N M SR \

Geoscience é Bt Chemistry

:Y"'-'""-’ii . .t: %

Computational = Computational
Medicine Modeling

Computational .« Computational
£ Oy :
Physics FAL Biology

Computational 1 - EGLE
Finance YY®® ™ Processing

© NVIDIA Corporation 2006-2008

Faster Is not “just Faster”

® 2-3X faster is “just faster”
® Do alittle more, wait a little less
® Doesn’t change how you work
® 5-10x faster is “significant”
® Worth upgrading
® Worth re-writing (parts of) the application

® 100x+ faster is “fundamentally different”
® Worth considering a new platform
® Worth re-architecting the application
® Makes new applications possible

® Drives “time to discovery” and creates fundamental
changes in Science

© NVIDIA Corporation 2006-2008

Relative
Floating Point
Performance

© NVIDIA Corporation 2006-2008

Fully Programmable

Eraof Shaders

G80

<A NV
The GPU is a New Computation Engine

Closely Coupled CPU-GPU

o)) () ()

Operation 1]—>[Operation 2]—)[Operation 3]

® Integrated programming model

® High speed data transfer —up to 3.2 GB/s
® Asynchronous operation

® Large GPU memory systems

© NVIDIA Corporation 2006-2008

Millions of CUDA-enabled GPUs
® Dedicated computing

® C on the GPU
® Servers through Notebook PCs

Total GPUs

(millions)

© NVIDIA Corporation 2006-2008

@D] 71N A

GeForce® Quadro® Teslam
Entertainment Design & Creation High Performance Computing

© NVIDIA Corporation 2006-2008

VMD/NAMD Molecular Dynamics

® 240X speedup
® Computational biology

Parallel GPUs with Multithreading:
705 GFLOPS /w 3 GPUs

= One host thread 15 ereated Tor cach CTUUDA G
* Threads are spawned and allach to therr GPU based on therr
host thread ID
Farst CUT A call bands that theead s CUTYA context to that GPLU for hife

— Handling error conditions within chuld threads 1s dependent on the
thread library and, makes dealing with any CUDA errors somewhal
tricky, lefl as an exercise to the reader, .. ©

» MNap shices are computed evelically by the GPTTy
+ Want to avoid false sharing on the host memory avstem

map slices are vsually much bigocr than the host memory page size. so
thiz is usually not a problem for this application

+ Performance of 3 GPUs is stunning!
+ Tower: 3 GPU test box consumes 700 watts running flat out

£ D] K MVIIEL it Weit-toed W, Ebam, 3007 71
FOF ARRAT,, T ey of Thaioe, Thihawea-Champkai

T ek
BiorHysics Grour

witkoud
[AND

laad VIO

iralls
ramiming
nrainry

CaAl amd COMPUTATIOMNA]

Ll o 2002 Geordun Bell Srmuid

Cram++ pamalel © AL moal s wilily clushars. (g

400 Lty LR Qnaohi -3 ENa Dl ka1l -compatitk: win SHMBES
e -4 4 fres of cherge w0 whal Binerme e 2 vk s
U fubartaks show ol hiow 9 Lma HAKD and VD fr biomalzoular modeing
WET High parformance compiting in hizingy: BUEmTinn atnm eimasions of nanoecals syshame | sartonmatzy avd -5 1ang. Joavral of SkaTiora
e Bupei eaingulel Sinidilons Ny Pisgaint Coudes of Pailboion'e Alzbaine s Diieises 5000 o A] B

i Tabgakiy &f @l FEBS Jdaimed, 27418621877, 2007 |

Single paarche Sianrch MARED welt stie and hrarisls R
Spotlipht [CFnar Snakiphhe
PAC Mews Rebeiae crvest @regory Vath ond grad sudeni PF

i 1 Lo P 3ty e

o curvahee 3 E
1o rur wficienily, using
1 “Wm hawer’t Faund

paftwars collad SAND, with as many a¢ 1 028 procasesrs | he sk
mard Imi e szaling up the number of processsrs.

el Taralamd

1 H EOESC MCEA g Unrearmily of Chicagos\Srgane
v I%wer Al smshare g3 th 12 =l |

http://www.ks.uiuc.edu/Research/vmd/projects/ece498/lecture/,

9

EvolvedMachines

® Simulate the brain circuit
® Sensory computing: vision, olfactory
® 130X Speed up

T i
(R SN { ik
AL i
:I-' ; e 4
i] SN ‘,_».’\‘{
\ T "" 3 }._ e 9
® 7 ﬁ‘.r)r (;jf\

soe'e'e

EvolvedMachines

Hanweck Associates S nVIDIA

® VOLERA, real-time options implied volatility engine

® Accuracy results with SINGLE PRECISION

® Evaluate all U.S. listed equity options in <1 second

Dispersion Statistics

(www.hanweckassoc.com)

> HANWECK
E3 ASSOCIATES,

LIBOR APPLICATION:
Mike Giles and Su Xiaoke
Oxford University Computing Laboratory

® LIBOR Model with portfolio of swaptions
® 380 initial forward rates and 40 timesteps to maturity
® 30 Deltas computed with adjoint approach

No Greeks Greeks
Intel Xeon 18.1s - 26.9s

ClearSpeed Advance 2.9s 6X 6.4s 4x
2 CSX600

NVIDIA 8800 GTX 0.045s 410]0)4 0.18s 149x

“The performance of the CUDA code on the 8800 GTX is exceptional”

_ -Mike Giles
Source codes and papers available at:

http://web.comlab.ox.ac.uk/oucl/work/mike.qgiles/hpc

© NVIDIA Corporation 2006-2008

Manifold 8 GIS Application

From the Manifold 8 feature list;:

... applications fitting CUDA capabilities that might have taken tens of
seconds or even minutes can be accomplished in hundredths of
seconds. ... CUDA will clearly emerge to be the future of almost all
GIS computing

From the user manual:

"NVIDIA CUDA ... could well be the most revolutionary thing to
happen in computing since the invention of the microprocessor

© NVIDIA Corporation 2006-2008

nbody Astrophysics

3445 "Gfiops-

Astrophysics research

1 GF on standard PC

300+ GF on GeForce 83800GTX http://progrape.jp/cs/

Faster than GRAPE-6Af custom simulation computer

© NVIDIA Corporation 2006-2008

Matlab: Language of Science

17X with MATLAB CPU+GPU

http://developer.nvidia.com/object/matlab cuda.html

Pseudo-spectral simulation of 2D Isotropic turbulence
http://www.amath.washington.edu/courses/571-winter-2006/matlab/FS_2Dturb.m

© NVIDIA Corporation 2006-2008 15

YA A

CUDA Programming Model Overview

GPU Computing

® GPU is a massively parallel processor
® NVIDIA G80: 128 processors
® Support thousands of active threads (12,288 on G80)

® GPU Computing requires a programming model that
can efficiently express that kind of parallelism
® Most importantly, data parallelism

® CUDA implements such a programming model

© NVIDIA Corporation 2006-2008

CUDA Kernels and Threads

«g Y .

® Parallel portions of an application are executed on

the device as kernels
® One kernel is executed at a time
® Many threads execute each kernel

® Differences between CUDA and CPU threads
® CUDA threads are extremely lightweight

® Very little creation overhead
® Instant switching

® CUDA uses 1000s of threads to achieve efficiency

® Multi-core CPUs can use only a few

Definitions:
Device = GPU: Host = CPU
© NVIDIA Corporation 2006-2008 Kernel = function that runs on the device

Arrays of Parallel Threads

® A CUDA kernel is executed by an array of threads
® All threads run the same code

® Each thread has an ID that it uses to compute memory
addresses and make control decisions

threadlD

float x = Input[threadlD];
float y = func(X);
output[threadlD] = y;

© NVIDIA Corporation 2006-2008

Thread Cooperation

® The Missing Piece: threads may need to cooperate

® Thread cooperation is valuable
® Share results to save computation
® Synchronization
® Share memory accesses
® Drastic bandwidth reduction

® Thread cooperation is a powerful feature of CUDA

© NVIDIA Corporation 2006-2008

Thread Blocks: Scalable Cooperation

® Divide monolithic thread array into multiple blocks
® Threads within a block cooperate via shared memory
® Threads in different blocks cannot cooperate

® Enables programs to transparently scale to any
number of processors!

Thread Block O Thread Block O Thread Block N - 1

threadID Lol tf2]3]4[5>5]F6 Lof:f2fs[4]ls]e]] of 1] 2| 3f 4| s]s6|7

float x = float x = float x =
input[threadlD]; input[threadlD]; input[threadlD];
float y = func(x); float y = func(X); " w float y = func(x);
output[threadlD] = y; output[threadlD] = y; output[threadlD] = y;

© NVIDIA Corporation 2006-2008

Transparent Scalability

on any processor at any time

® A kernel scales across any number of parallel
multiprocessors

Kernel grid

Device Device
Block O Block 1

/ Block 2 Block 3 \
Block 4 Block 5

Block O | Block 1 Block 6 Block 7 Block O @ Block1l Block2 Block 3

Block 2 | Block 3 Block 4 @ Block5 Block6 Block 7

Block 4 | Block 5

Block 6 | Block 7

© NVIDIA Corporation 2006-2008

CUDA Programming Model

A kernel is executed by a
grid of thread blocks

® A thread block is a batch
of threads that can
cooperate with each
other by:

® Sharing data through
shared memory

® Synchronizing their
execution

® Threads from different
blocks cannot cooperate

© NVIDIA Corporation 2006-2008

Device
Grid 1

Block
(0, 0)

Block
(1,0)

Block,f"
()

Block
(1, 1)

4 /
4 v
// . 4
7/
< Grid 2
d /
/
/

Kernel

’
’
,
2 4
v
v
’
’
’
’
’
’
2

Block (1, 1)

Thread | Thread | Thread | Thread | Thread
0,00 | (1,O) | (20) | 3,00 [(40
Thread | Thread | Thread | Thread | Thread
o1 | @Yy | 21 | G | 41

Thread | Thread | Thread | Thread | Thread
0, 2) 1,2 (2,2) (3,2 4,2

Block
(2,0)

v Block
v (2,1

G80 Device

Processors M execute computing threads

Thread Execution Manager issues threads
128 Thread Processors grouped into 16 Multiprocessors (SMs)

Parallel Data Cache (Shared Memory) enables thread
cooperation

Input Assembler

Thread Execution Manager g

Load/store

© NVIDIA Corporation 2006-2008 Global Memory

Thread and Block IDs

® Threads and blocks have IDs

® Each thread can decide what Device
data to work on

Block

® Block ID: 1D or 2D L ¢0

(1, 1)

® Thread ID: 1D, 2D, or 3D | Block '

® Simplifies memory Block (1, 1

addreSSIng When pFOCeSSH’]g Thread | Thread | Thread | Thread | Thread
multi-dimensional data ©0 | @0 | @0 | e | *o

_ . Thread | Thread | Thread | Thread | Thread
® Image processing

0 (1, 1) (2,1) (3,1) (4,1)
0

..f' SO|Ving PDES on VOIUmeS Thread | Thread | Thread | Thread | Thread
02| &2 [22 | B2 | 42

© NVIDIA Corporation 2006-2008

Kernel Memory Access

Registers

Global Memory (external DRAM)
® Kernel input and output data reside here
® Off-chip, large
® Uncached

Shared Memory (Parallel Data Cache)
® Shared among threads in a single block
® On-chip, small
® As fast as registers

Grid

Block (0, 0) Block (1, 0)

Shared Memory Shared Memory

Registers Registers Registers Registers

Thread (0, 0)| Thread (1, 0)| | Thread (0, 0)| Thread (1, 0)

Global
Memory

The host can read & write global memory but not shared memory

© NVIDIA Corporation 2006-2008

Execution Model

® Kernels are launched in grids
® One kernel executes at atime

® A block executes on one Streaming Multiprocessor
(SM)

® Does not migrate

® Several blocks can reside concurrently on one SM
® Control limitations (of G8X/G9X GPUs):

® At most 8 concurrent blocks per SM
® At most 768 concurrent threads per SM

® Number is further limited by SM resources

® Register file is partitioned among all resident threads
® Shared memory is partitioned among all resident thread blocks

© NVIDIA Corporation 2006-2008

CUDA Advantages over Legacy GPGPU

(Legacy GPGPU is programming GPU through graphics APIs)

® Random access byte-addressable memory
® Thread can access any memory location

® Unlimited access to memory
® Thread can read/write as many locations as needed

® Shared memory (per block) and thread
synchronization
® Threads can cooperatively load data into shared memory
® Any thread can then access any shared memory location
® Low learning curve
® Just afew extensions to C
® No knowledge of graphics is required

® No graphics APl overhead

© NVIDIA Corporation 2006-2008

CUDA Model Summary

® Thousands of lightweight concurrent threads
® No switching overhead
® Hide instruction and memory latency
® Shared memory
® User-managed L1 cache
® Thread communication / cooperation within blocks

® Random access to global memory

® Any thread can read/write any location(s)

® Current generation hardware:
® Up to 128 streaming processors

Memory Location Cached Access Scope (“Who?")

Shared On-chip N/A Read/write All threads in a block
Global Off-chip No Read/write All threads + host

© NVIDIA Corporation 2006-2008

P AT A

Programming CUDA

The Basics

Outline of CUDA Basics

® Basics to set up and execute GPU code:

® GPU memory management
® GPU kernel launches
® Some specifics of GPU code

® Basics of some additional features:
® Vector types
® Managing multiple GPUs, multiple CPU threads
® Checking CUDA errors
® CUDA event API
® Compilation path

®
® See the Programming Guide for many more API functions

© NVIDIA Corporation 2006-2008 3 l

Managing Memory

® Host (CPU) code manages device (GPU) memory:
® Allocate / free
® Copy data
® Applies to global and constant device memory (DRAM)

® Shared memory (on-chip) is statically allocated
® Host manages texture data:

® Stored on GPU
® Takes advantage of texture caching / filtering / clamping

® Host manages pinned (nhon-pageable) CPU memory:
® Allocate / free

© NVIDIA Corporation 2006-2008

GPU Memory Allocation / Release = &=nviniz

® cudaMalloc(void ** pointer, size _t nbytes)
® cudaMemset(void * pointer, int value, size t count)
® cudaFree(void* pointer)

int n = 1024;
InNt nbytes =
int *d a = 0O;
cudaMalloc((void**)&d a, nbytes);
cudaMemset(d_a, O, nbytes),;
cudaFree(d _a);

1024*si1zeof(int);

© NVIDIA Corporation 2006-2008

Data Copies

® cudaMemcpy(void *dst, void *src, size_t nbytes,
enum cudaMemcpyKind direction);
® direction specifies locations (host or device) of src and dst
® Blocks CPU thread: returns after the copy is complete
® Doesn’t start copying until previous CUDA calls complete
® cudaMemcpyAsync(..., cudaStream t streamld)
® Host memory must be pinned (allocate with cudaMallocHost)
® Returns immediately

® doesn’t start copying until previous CUDA calls in stream
streamld or O complete

® enum cudaMemcpyKind
® cudaMemcpyHostToDevice
® cudaMemcpyDeviceToHost
® cudaMemcpyDeviceToDevice

© NVIDIA Corporation 2006-2008

Exercise 1

® We're going to dive right into programming CUDA

® In exercise 1 you will learn to use cudaMalloc and
cudaMemcpy

© NVIDIA Corporation 2006-2008

Executing Code on the GPU

® C function with some restrictions
® Can only access GPU memory
® No variable number of arguments (“varargs”)
® No static variables
@® Must be declared with a qualifier
® global :invoked from within host (CPU) code,
cannot be called from device (GPU) code
must return void

® device :called from other GPU functions,
cannot be called from host (CPU) code

® host :canonly be executed by CPU, called from host

® host and _device qualifiers can be combined
® sample use: overloading operators
® Compiler will generate both CPU and GPU code

© NVIDIA Corporation 2006-2008

Launching kernels on GPU

® Modified C function call syntax:

kernel<<<dim3 grid, dim3 block, Int smem, iInt stream>>>(...)
® Execution Configuration (“<<< >>>"):

® grid dimensions: x and y

® thread-block dimensions: x, y, and z

® shared memory: number of bytes per block for extern
smem variables declared without size

® optional, 0 by default
® stream ID

® optional, 0 by default
dim3 grid(16, 16);
dim3 block(16,16);
kernel<<<grid, block, 0, 0>>>(...);
kernel<<<32, 512>>>(...);

© NVIDIA Corporation 2006-2008

CUDA Built-in Device Variables

® All global and device functions have
access to these automatically defined variables

® dim3 gridDim;
® Dimensions of the grid in blocks (gridDim.z

unused)
® dim3 blockDim;

® Dimensions of the block in threads
® dim3 blockldx;

® Block index within the grid
® dim3 threadldx;

® Thread index within the block

© NVIDIA Corporation 2006-2008

Minimal Kernels

__global void minimal(int* d_a)

{
*d a=13;

__global void assign(int*d_a, int value)

{

Int 1IdX = blockDim.x * blockldx.x + threadldx.x;

Common Pattern!

S
d_alidx] = value;

© NVIDIA Corporation 2006-2008

Minimal Kernel for 2D data

__global void assign2D(int*d_a, int w, int h, int value)

{
iInt 1y = blockDim.y * blockldx.y + threadldx.y;

Int IX = blockDim.x * blockldx.x + threadldx.x;
Nt idx =1y *w + Ix;

d_alidx] = value;

}

assign2D<<<dim3(64, 64), dim3(16, 16)>>>(...);

© NVIDIA Corporation 2006-2008

Exercise 2: your first CUDA kernel <&=&nviois

® In this exercise you will write and execute a simple
CUDA kernel

© NVIDIA Corporation 2006-2008

Host Synchronization

@® All kernel launches are asynchronous
® control returns to CPU immediately

® kernel executes after all previous CUDA calls have
completed

® cudaMemcpy is synchronous
® control returns to CPU after copy completes
® copy starts after all previous CUDA calls have completed

® cudaThreadSynchronize()
® blocks until all previous CUDA calls complete

® Async API provides:
® GPU CUDA-call streams
® non-blocking cudaMemcpyAsync

© NVIDIA Corporation 2006-2008

Example: Increment Array Elements &nvioiz

CPU program CUDA program

__global__ void increment_gpu(float *a, float b, int N)

{

{ . .
. - int idx = blockldx.x * blockDim.x + threadldx.x;
for (int idx = 0; idX<N; idx++) if (idx < N)

afidx] = afidx] + b; afidx] = afidx] + b;

void increment_cpu(float *a, float b, int N)

void main()
void main()

dim3 dimBlock (blocksize);,
increment_cpu(a, b, N); dim3 dimGrid(ceil(N / (float)blocksize));
increment_gpu<<<dimGrid, dimBlock>>>(a, b, N);

© NVIDIA Corporation 2006-2008

Example: Increment Array Elements &&nvioiz

Increment N-element vector a by scalar b

Let’'s assume N=16, blockDim=4 -> 4 blocks

blockldx.x=0 blockldx.x=1 blockldx.x=2 blockldx.x=3
blockDim.x=4 blockDim.x=4 blockDim.x=4 blockDim.x=4
threadldx.x=0,1,2,3 threadldx.x=0,1,2,3 threadldx.x=0,1,2,3 threadldx.x=0,1,2,3
idx=0,1,2,3 iIdx=4,5,6,7 1dx=8,9,10,11 Idx=12,13,14,15

Int idx = blockDim.x * blockld.x + threadldx.x;
will map from local index threadldx to global index

NB: blockDim should be >= 32 in real code, this is just an example

© NVIDIA Corporation 2006-2008

Example: Host Code

// allocate host memory
unsigned int numBytes = N * sizeof(float)
float* h_A = (float*) malloc(humBytes);

// allocate device memory
float* d A = O;
cudaMalloc((void**)&d A, numbytes);

// copy data from host to device

cudaMemcpy(d_A, h_A, numBytes, cudaMemcpyHostToDevice);

// execute the kernel
increment_gpu<<< N/blockSize, blockSize>>>(d_A, b);

// copy data from device back to host
cudaMemcpy(h_A, d_A, numBytes, cudaMemcpyDeviceToHost);

// free device memory
cudaFree(d_A);

© NVIDIA Corporation 2006-2008

Variable Qualifiers (GPU code)

® device
® stored in device memory (large, high latency, no cache)
® Allocated with cudaMalloc (__device qualifier implied)
® accessible by all threads
® lifetime: application

® constant
® sameas device |, but cached and read-only by GPU
® written by CPU via cudaMemcpyToSymbol(...) call
® lifetime: application

® shared
® stored in on-chip shared memory (very low latency)
® accessible by all threads in the same thread block
® lifetime: kernel launch

® Unqualified variables:
® scalars and built-in vector types are stored in registers
® arrays of more than 4 elements stored in device memory

© NVIDIA Corporation 2006-2008

CUDA Memory Spaces

® Each thread can:

® Read/write per-thread registers

® Read/write per-thread local memory
® Read/write per-block shared memory
® Read/write per-grid global memory
® Read only per-grid constant memory
® Read only per-grid texture memory

® The host can read/write
global, constant, and
texture memory (stored
in DRAM)

© NVIDIA Corporation 2006-2008

Grid

Block (0, 0)

Shared Memory

Registers Registers

Thread (0, 0)| | Thread (1, 0)

Local
Memory

Local
Memory

Global
Memory

Constant
Memory

Texture
Memory

Block (1, 0)

Shared Memory

Registers Registers

Thread (0, 0)

Thread (1, 0)

Local
Memory

Local
Memory

CUDA Memory Spaces

® Global and Shared Memory introduced before
® Most important, commonly used
® Local, Constant, and Texture for convenience/performance
® [ocal: automatic array variables allocated there by compiler
® Constant: useful for uniformly-accessed read-only data
® Cached (see programming guide)

® Texture: useful for spatially coherent random-access read-
only data

® Cached (see programming guide)
® Provides address clamping and wrapping

Memory Location Cached Access Scope (“Who?”)

Local Off-chip No Read/write One thread

Shared On-chip N/A Read/write All threads in a block

Global Off-chip No Read/write All threads + host

Constant Off-chip Yes Read All threads + host

Texture Off-chip Yes Read All threads + host

© NVIDIA Corporation 2006-2008

Built-in Vector Types

® Can be used in GPU and CPU code

® [ulchar[1..4], [u]lshort[1l..4], [u]lint[1. .4],
[u]Jlong[l. .4], float]l. .4]

® Structures accessed with x, y, z, w fields:
uint4 param;
iInt y = param.y;

® dim3
® Based on uint3

® Used to specify dimensions
® Default value (1,1,1)

© NVIDIA Corporation 2006-2008

Thread Synchronization Function €nviois

® void syncthreads();

® Synchronizes all threads in a block
® Generates barrier synchronization instruction

® No thread can pass this barrier until all threads in the
block reach it

® Used to avoid RAW / WAR / WAW hazards when
accessing shared memory

® Allowed in conditional code only if the conditional is
uniform across the entire thread block

© NVIDIA Corporation 2006-2008

GPU Atomic Integer Operations

® Atomic operations on integers in global memory:
® Associative operations on signed/unsigned ints
® add, sub, min, max, ...
® and, or, xor
® Increment, decrement
® Exchange, compare and swap

® Requires hardware with compute capability 1.1

© NVIDIA Corporation 2006-2008

Device Management

® CPU can query and select GPU devices
® cudaGetDeviceCount(int *count)
® cudaSetDevice(int device)
® cudaGetDevice(int *current_device)
® cudaGetDeviceProperties(cudaDeviceProp* prop,
Int device)
® cudaChooseDevice(int *device, cudaDeviceProp* prop)

® Multi-GPU setup:

® device Ois used by default

® one CPU thread can control only one GPU
® multiple CPU threads can control the same GPU
— calls are serialized by the driver

© NVIDIA Corporation 2006-2008

Multiple CPU Threads and CUDA

® CUDA resources allocated by a CPU thread can be
consumed only by CUDA calls from the same CPU
thread

® Violation Example:
® CPU allocates GPU memory, stores address in p
® Issues a CUDA call that accesses memory via p

© NVIDIA Corporation 2006-2008

CUDA Error Reporting to CPU

@® All CUDA calls return error code:

® except for kernel launches
® cudaError_t type

® cudaError_t cudaGetLastError(void)
® returns the code for the last error (no error has a code)

® char* cudaGetErrorString(cudaError_t code)

® returns a null-terminted character string describing the
error

printf(* %s\n”, cudaGetErrorString(cudaGetLastError()));

© NVIDIA Corporation 2006-2008

CUDA Event API S NVIDIA

® Events are inserted (recorded) into CUDA call streams

® Usage scenarios:
® measure elapsed time for CUDA calls (clock cycle precision)
® query the status of an asynchronous CUDA call
® block CPU until CUDA calls prior to the event are completed
® asyncAPIl sample in CUDA SDK

cudaEvent _t start, stop;

cudaEventCreate(&start); cudaEventCreate(&stop);
cudaEventRecord(start, 0);

kernel<<<grid, block>>>(...);

cudaEventRecord(stop, 0);

cudaEventSynchronize(stop);

float et;

cudaEventElapsedTime(&et, start, stop);
cudaEventDestroy(start); cudaEventDestroy(stop);

© NVIDIA Corporation 2006-2008

Compiling CUDA

C/C++ CUDA
Application

CPU Code

| PTX Code_ Virtual

"PTX to Target
Compiler

© NVIDIA Corporation 2006-2008

NVCC & PTX Virtual Machine

float4 me = gx[gtid];
me.x += me.y * me.z;

C/C++ CUDA
Application

® EDG
® Separate GPU vs. CPU code
® Open64

® Generates GPU PTX
assembly

® Parallel Thread eXecution
® Virtual Machine and ISA
® Programming model

PTX Code ® Execution resources and
State

Id.global.v4.132 {$f1,$f3,$f5,$f7}, [$r9+0];
mad . 32 $f1, $f5, $f3, $f1;

© NVIDIA Corporation 2006-2008

Compilation

® Any source file containing CUDA language
extensions must be compiled with nvcc

® NVCC is acompiler driver

® Works by invoking all the necessary tools and compilers
like cudacc, g++, cl, ...

® NVCC can output:

® Either C code (CPU Code)

® That must then be compiled with the rest of the application
using another tool

® Or PTX object code directly

® An executable with CUDA code requires:
® The CUDA core library (cuda)
® The CUDA runtime library (cudart)

®if runtime APl is used
® [oads cuda library

© NVIDIA Corporation 2006-2008

Exercise 3: Reverse a Small Array nvioiz

® Given an input array, reverse it

® In this part, you will reverse a small array
® the Size of a single thread block

© NVIDIA Corporation 2006-2008

Exercise 4: Reverse a Large Array &nvioiz

® Given alarge input array, reverse it

® This requires launching many thread blocks

© NVIDIA Corporation 2006-2008

P AT A

Getting Started

Get CUDA

® CUDA Zone: http://nvidia.com/cuda
® Programming Guide and other Documentation
® Toolkits and SDKs for:
® Windows
® Linux
® MacOS
Libraries
Plugins
Forums
Code Samples

© NVIDIA Corporation 2006-2008

Come visit the class!

® UIUC ECE498AL —
Programming Massively

Parallel Processors
(http://courses.ece.uiuc.edu/ece498/al/)

® David Kirk (NVIDIA) and Wen-
meil Hwu (UIUC) co-instructors &=

® CUDA programming, GPU
computing, lab exercises, and
projects

® Lecture slides and voice
recordings

© NVIDIA Corporation 2006-2008

Questions?

© NVIDIA Corporation 2006-2008

