
Phillip Miller | Director of Product Management, Workstation Software

SIGGRAPH ASIA | December 16, 2010

Languages, APIs and Development Tools
for GPU Computing

 Introduction – GPU Computing

 Options – Languages

 Assistance – Development Tools

 Approach – Application Design Patterns

 Leveraging – Libraries and Engines

 Scaling – Grid and Cluster

 Learning – Developer Resources

Agenda for This Morning’s Overview

“GPGPU or GPU Computing”

 Using all processors in the system

for the things they are best at doing:

— Evolution of CPUs makes them good at sequential, serial tasks

— Evolution of GPUs makes them good at parallel processing

GPUCPU

NVIDIA Confidential

DirectX

GPU Computing Ecosystem

Languages & API’s

Tools & PartnersIntegrated
Development Environment
Parallel Nsight for MS Visual Studio

Mathematical
Packages

Consultants, Training
& Certification

Research & Education

All Major Platforms

Libraries

Fortran

GPU Computing Applications

Broad Adoption

CUDA - NVIDIA’s Architecture for GPU Computing

+250M CUDA-enabled

GPUs in use

+650k CUDA Toolkit

downloads in last 2 Yrs

+350 Universities

teaching GPU Computing

on the CUDA Architecture

Cross Platform:

Linux, Windows, MacOS

Uses span

HPC to Consumer

NVIDIA GPU
with the CUDA Parallel Computing Architecture

CUDA
C/C++

OpenCL Direct
Compute

Fortran Python,
Java, .NET, …

+100k developers

In production usage
since 2008

SDK + Libs + Visual
Profiler and Debugger

Commercial OpenCL
Conformant Driver

Publicly Available for all
CUDA capable GPU’s

SDK + Visual Profiler

Microsoft API for
GPU Computing

Supports all CUDA-
Architecture GPUs
(DX10 and DX11)

PyCUDA

GPU.NET

jCUDA

PGI Accelerator

PGI CUDA Fortran

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Your GPU Computing Application

GPU Computing Software Stack

CUDA Architecture

Application Acceleration Engines
Middleware, Modules & Plug-ins

Foundation Libraries
Low-level Functional Libraries

Development Environment
Languages, Device APIs, Compilers, Debuggers, Profilers, etc.

© NVIDIA Corporation 2010

Options -

Languages & APIs

Language & APIs for GPU Computing

Approach Examples

Application Level Integration MATLAB, Mathematica, LabVIEW

Implicit Parallel Languages (high level) PGI Accelerator, HMPP

Abstraction Layer or API Wrapper PyCUDA, CUDA.NET, jCUDA

Explicit Language Integration (high level) CUDA C/C++, PGI CUDA Fortran

Device API (low level) CUDA C/C++, DirectCompute, OpenCL

Example: Application Level Integration

Workstation Compute Cluster

MATLAB Distributed Computing Server (MDCS)MATLAB Parallel Computing Toolbox (PCT)

• PCT enables high performance through

parallel computing on workstations

• NVIDIA GPU acceleration now available

• MDCS allows a MATLAB PCT application to be

submitted and run on a compute cluster

• NVIDIA GPU acceleration now available

GPU support with MathWorks Parallel Computing Toolbox™

and Distributed Computing Server™

MATLAB Performance on Tesla (previous GPU generation)

Core 2 Quad Q6600 2.4 GHz, 6 GB RAM, Windows 7 64-bit, Tesla C1060, single precision operations

-

2.0

4.0

6.0

8.0

10.0

12.0

256 K 1,024 K 4,096 K 16,384 K

R
e
la

ti
v

e
 E

x
e
c
u

ti
o

n
 S

p
e
e
d

Input Size

Relative Performance, Black-Scholes Demo
Compared to Single Core CPU Baseline

Single Core CPU Quad Core CPU Single Core CPU + Tesla C1060 Quad Core CPU + Tesla C1060

Example: Implicit Parallel Languages
PGI Accelerator Compilers

saxpy_:

…

movl (%rbx), %eax

movl %eax, -4(%rbp)

call __pgi_cu_init

. . .

call __pgi_cu_function

…

call __pgi_cu_alloc

…

call __pgi_cu_upload

…

call __pgi_cu_call

…

call __pgi_cu_download

…

typedef struct dim3{ unsigned int x,y,z; }dim3;

typedef struct uint3{ unsigned int x,y,z; }uint3;

extern uint3 const threadIdx, blockIdx;

extern dim3 const blockDim, gridDim;

static __attribute__((__global__)) void

pgicuda(

__attribute__((__shared__)) int tc,

__attribute__((__shared__)) int i1,

__attribute__((__shared__)) int i2,

__attribute__((__shared__)) int _n,

__attribute__((__shared__)) float* _c,

__attribute__((__shared__)) float* _b,

__attribute__((__shared__)) float* _a)

{ int i; int p1; int _i;

i = blockIdx.x * 64 + threadIdx.x;

if(i < tc){

_a[i+i2-1] = ((_c[i+i2-1]+_c[i+i2-1])+_b[i+i2-1]);

_b[i+i2-1] = _c[i+i2];

_i = (_i+1);

p1 = (p1-1);

} }

Host x64 asm File Auto-generated GPU code

+

compile

… no change to existing makefiles, scripts, IDEs,
programming environment, etc.

+

Unified

a.out

SUBROUTINE SAXPY (A,X,Y,N)

INTEGER N

REAL A,X(N),Y(N)

!$ACC REGION

DO I = 1, N

X(I) = A*X(I) + Y(I)

ENDDO

!$ACC END REGION

END

execute

link

Example: Abstraction Layer/Wrapper

Slide courtesy of Andreas Klöckner, Brown University

http://mathema.tician.de/software/pycuda

PyCUDA / PyOpenCL

http://mathema.tician.de/software/pycuda

CUDA C: C with a few keywords

void saxpy_serial(int n, float a, float *x, float *y)

{

for (int i = 0; i < n; ++i)

y[i] = a*x[i] + y[i];

}

// Invoke serial SAXPY kernel

saxpy_serial(n, 2.0, x, y);

__global__ void saxpy_parallel(int n, float a, float *x, float *y)

{

int i = blockIdx.x*blockDim.x + threadIdx.x;

if (i < n) y[i] = a*x[i] + y[i];

}

// Invoke parallel SAXPY kernel with 256 threads/block

int nblocks = (n + 255) / 256;

saxpy_parallel<<<nblocks, 256>>>(n, 2.0, x, y);

Standard C Code

CUDA C Code

Example: Language Integration

OpenCL
 Cross-vendor open standard

— Managed by the Khronos Group

 Low-level API for device management and

launching kernels

— Close-to-the-metal programming interface

— JIT compilation of kernel programs

 C-based language for compute kernels

— Kernels must be optimized for each processor architecture

NVIDIA released the first OpenCL conformant driver for

Windows and Linux to thousands of developers in June 2009

http://www.khronos.org/opencl

Example: Low-level Device API

http://www.khronos.org/opencl

Direct Compute

 Microsoft standard for all GPU vendors

— Released with DirectX® 11 / Windows 7

— Runs on all +100M CUDA-enabled DirectX 10 class GPUs and later

 Low-level API for device management and launching kernels

— Good integration with DirectX 10 and 11

 Defines HLSL-based language for compute shaders

— Kernels must be optimized for each processor architecture

Example: Low-level Device API

Write GPU kernels in C#, F#, VB.NET, etc.

 Exposes a minimal API accessible from any

.NET-based language

— Learn a new API instead of a new language

 JIT compilation = dynamic language support

 Don’t rewrite your existing code

— Just give it a ―touch-up‖

Example: New Approach

Language & APIs for GPU Computing

Approach Examples

Application Level Integration MATLAB, Mathematica, LabVIEW

Implicit Parallel Languages (high level) PGI Accelerator, HMPP

Abstraction Layer or API Wrapper PyCUDA, CUDA.NET, jCUDA

Explicit Language Integration (high level) CUDA C/C++, PGI CUDA Fortran

Device API (low level) CUDA C/C++, DirectCompute, OpenCL

© NVIDIA Corporation 2010

Assistance -

Development Tools

Build Debug Profile

Parallel Nsight for Visual Studio

Integrated development for CPU and GPU

Windows GPU Development for 2010
NVIDIA Parallel Nsight ™ 1.5

cuda-gdb Shader Debugger

Visual Profiler

cudaprof

PerfHUD

ShaderPerf

Platform Analyzer

FX Composer

cuda-memcheck

nvcc

© NVIDIA Corporation 2010

4 Flexible GPU Development Configurations

Desktop Single machine, Single NVIDIA GPU
Analyzer, Graphics Inspector

Networked Two machines connected over the network

TCP/IP

Single machine, Dual NVIDIA GPUs
Analyzer, Graphics Inspector, Compute Debugger

Analyzer, Graphics Inspector, Compute Debugger, Graphics Debugger

Workstation SLI SLI Multi OS workstation with multiple Quadro GPUs
Analyzer, Graphics Inspector, Compute Debugger, Graphics Debugger

Supported on 32bit & 64bit Linux,
MacOS to come.

Seamlessly debug both the
host/CPU and device/GPU code

Set breakpoints on any source
line or symbol name

Access and print all CUDA
memory allocs, local, global,
constant and shared vars

Linux: NVIDIA cuda-gdb

CUDA debugging integrated
into GDB on Linux

Parallel Source

Debugging

Included in the CUDA Toolkit

3rd Party: DDT debugger

 Latest News from Allinea

 CUDA SDK 3.0 with DDT 2.6

 Released June 2010

 Fermi and Tesla support

 cuda-memcheck support for memory errors

 Combined MPI and CUDA support

 Stop on kernel launch feature

 Kernel thread control, evaluation and

breakpoints

 Identify thread counts, ranges and CPU/GPU

threads easily

 SDK 3.1 in beta with DDT 2.6.1

 SDK 3.2

 Coming soon: multiple GPU device support

3rd Party: TotalView Debugger
 Latest from TotalView debugger (in Beta)

— Debugging of application running on the GPU device

— Full visibility of both Linux threads and GPU device threads

 Device threads shown as part of the parent Unix process

 Correctly handle all the differences between the CPU and GPU

— Fully represent the hierarchical memory

 Display data at any level (registers, local, block, global or host memory)

 Making it clear where data resides with type qualification

— Thread and Block Coordinates

 Built in runtime variables display threads in a warp, block and thread

dimensions and indexes

 Displayed on the interface in the status bar, thread tab and stack frame

— Device thread control

 Warps advance Synchronously

— Handles CUDA function inlining

 Step in to or over inlined functions

— Reports memory access errors

 CUDA memcheck

— Can be used with MPI

Included in the CUDA Toolkit

NVIDIA Visual Profiler

Analyze GPU HW performance
signals, kernel occupancy,
instruction throughput, and more

Highly configurable
tables and graphical views

Save/load profiler sessions or
export to CSV for later analysis

Compare results visually
across multiple sessions to
see improvements

Windows, Linux and Mac OS X
OpenCL support on Windows and Linux

GPU Computing SDK

Hundreds of code samples for
CUDA C, DirectCompute and OpenCL

Finance

Oil & Gas

Video/Image Processing

3D Volume Rendering

Particle Simulations

Fluid Simulations

Math Functions

© 2009 NVIDIA Corporation

Approach -

Design Patterns

Accelerating Existing Applications

Identify Possibilities

Port Relevant Portion

Validate Gains

Optimize

Deploy

Profile for Bottlenecks,

Inspect for Parallelism

A Debugger is a good starting point,

Consider Libraries & Engines vs. Custom

Benchmark vs. CPU version

Parallel Nsight, Visual Profiler,

GDB, Tau CUDA, etc.

Maintain original as CPU fallback if desired.

Trivial Application (Accelerating a Process)

Design Rules:

Serial task processing on CPU

Data Parallel processing on GPU

Copy input data to GPU

Perform parallel processing

Copy results back

Follow guidance in the

CUDA C Best Practices Guide

The CUDA C Runtime could be substituted

with other methods of accessing the GPU

Application

CPU C Runtime CUDA C RuntimeOpenCL DriverCUDA Driver APICUDA FortranPyCUDACUDA.NETCUDA C Runtime

CPU
CPU

Memory
GPU

GPU

Memory

Basic Application – using multi-GPU

“Trivial Application” plus:

Maximize overlap of data transfers and computation

Minimize communication required between processors

Use one CPU thread to manage each GPU

Multi-GPU notebook, desktop,

workstation and cluster node

configurations are increasingly common

Application

CPU C Runtime CUDA C Runtime

GPU
GPU

Memory
GPU

GPU

Memory
CPU

CPU

Memory

Graphics Application

“Basic Application” plus:

Use graphics interop to avoid unnecessary copies

In Multi-GPU systems, put buffers to be displayed in GPU

Memory of GPU attached to the display

Application

CPU C Runtime CUDA C Runtime OpenGL / Direct3D

GPU
GPU

Memory
CPU

CPU

Memory

Basic Library

“Basic Application” plus:

Avoid unnecessary memory transfers

Use data already in GPU memory

Create and leave data in GPU memory

Library

CPU C Runtime CUDA C Runtime

These rules apply to plug-ins as well

CPU
CPU

Memory
GPU

GPU

Memory

Application with Plug-ins

“Basic Application” plus:

Plug-in Mgr

Allows Application and Plug-ins

to (re)use same GPU memory

Multi-GPU aware

Follow “Basic Library” rules

for the Plug-ins CPU C Runtime CUDA C Runtime

Application

Plug-in Mgr

Plug-inPlug-in Plug-in

CPU
CPU

Memory
GPU

GPU

Memory

Multi-GPU Cluster Application

M
P

I
o

v
e
r

 E
th

e
rn

e
t,

 I
n

fi
n

ib
a
n

d
,
e
tc

.

“Basic Application” plus:

Use Shared Memory for

intra-node communication

or pthreads, OpenMP, etc.

Use MPI to communicate

between nodes Application

CPU C Runtime CUDA C Runtime

GPU
GPU

MemoryCPU
CPU

Memory
GPU

GPU

Memory

Application

CPU C Runtime CUDA C Runtime

GPU
GPU

MemoryCPU
CPU

Memory
GPU

GPU

Memory

Application

CPU C Runtime CUDA C Runtime

GPU
GPU

MemoryCPU
CPU

Memory
GPU

GPU

Memory

© 2009 NVIDIA Corporation

Leveraging –

Libraries & Engines

© 2009 NVIDIA Corporation

Development Environment
Languages, Device APIs, Compilers, Debuggers, Profilers, etc.

Your GPU Computing Application

GPU Computing Software Stack

CUDA Architecture

Application Acceleration Engines
Middleware, Modules & Plug-ins

Foundation Libraries
Low-level Functional Libraries

CUFFT Library 3.2: Improving Radix-3, -5, -7

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

G
FL

O
P

S

log3(size)

Radix-3 (SP, ECC off)

C2070 R3.2

C2070 R3.1

MKL

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

G
FL

O
P

S

log3(size)

Radix-3 (DP, ECC off)

C2070 R3.2

C2070 R3.1

MKL

CUFFT 3.2 & 3.1 on NVIDIA Tesla C2070 GPU
MKL 10.2.3.029 on Quad-Core Intel Core i7 (Nehalem)

Radix-5, -7 and mixed radix improvements not shown

CUBLAS Library 3.2 performance gains

0x

2x

4x

6x

8x

10x

12x

1024 2048 3072 4096 5120 6144 7168

S
p
e
e
d
u
p
 v

s.
 M

K
L

Matrix dimensions (NxN)

MKL

v3.1

v3.2

Up to 2x average speedup over CUBLAS 3.1

Less variation in performance

for different dimensions vs. 3.1

CUFFT 3.2 & 3.1 on NVIDIA Tesla C2050 GPU
MKL 10.2.3.029 on Quad-Core Intel Core i7 (Nehalem)

Average speedup of {S/D/C/Z}GEMM x {NN,NT,TN,TT}

MATLAB Interface

» 15+ functions

» Up to 10x speedup

“CULAPACK” Library

» Dense linear algebra

» C/C++ & FORTRAN

» 150+ Routines

GPU Accelerated

Linear Algebra

Supercomputer Speeds

Performance 7x of

Intel’s MKL LAPACK

Partnership

Developed in

partnership with

NVIDIA

3rd Party Example: CULA (LAPACK for heterogeneous systems)

CULA Library 2.2 Performance

Supercomputing Speeds

This graph shows the relative speed of many CULA functions when compared to

Intel’s MKL 10.2. Benchmarks were obtained comparing an NVIDIA Tesla C2050

(Fermi) and an Intel Core i7 860. More at www.culatools.com

http://www.culatools.com/

CUSparse Library: Matrix Performance vs. CPU

0x

5x

10x

15x

20x

25x

30x

35x

Multiplication of a sparse matrix by multiple vectors

"Non-transposed"

"Transposed"

MKL 10.2

Average speedup across S,D,C,Z

CUSPARSE 3.2 on NVIDIA Tesla C2050 GPU
MKL 10.2.3.029 on Quad-Core Intel Core i7 (Nehalem)

CURan Libray: Random Number Generation

0x

5x

10x

15x

20x

25x

SP DP SP DP

Uniform Normal

Generating 100K Sobol' Samples - GPU vs. CPU

CURAND 3.2

MKL 10.2

CURAND 3.2 on NVIDIA Tesla C2050 GPU
MKL 10.2.3.029 on Quad-Core Intel Core i7 (Nehalem)

43

NAG GPU Library

 Monte Carlo related

 L’Ecuyer, Sobol RNGs

 Distributions, Brownian Bridge

 Coming soon

 Mersenne Twister RNG

 Optimization, PDEs

 Seeking input from the community

 For up-to-date information:
www.nag.com/numeric/gpus

http://www.nag.com/numeric/gpus

NVPP Library: Graphics Performance Primitives

 Similar to Intel IPP focused on

image and video processing

 6x - 10x average speedup vs. IPP

— 2800 performance tests

 Core i7 (new) vs. GTX 285 (old)

 Now available with CUDA Toolkit

NPP Performance Suite Grand Totals

0

2

4

6

8

10

12

Core2Duo t=1 Core2Duo t=2 Nehalem t=1 Nehalem t=8 Geforce 9800

GTX+

Geforce GTX

285

Processor

R
e
la

ti
v
e
 A

g
re

g
a
te

 S
p

e
e
d

Aggregate Performance Results

www.nvidia.com/npp

http://www.nvidia.com/npp

 Open source, supported by NVIDIA

 Computer Vision Workbench (CVWB)

http://openvidia.sourceforge.net

GPU imaging & computer vision

Demonstrates most commonly used image

processing primitives on CUDA

Demos, code & tutorials/information

OpenVIDIA

More Open Source Projects

Thrust: Library of parallel algorithms

with high-level STL-like interface

OpenCurrent: C++ library for solving PDE’s

over regular grids

200+ projects on Google Code & SourceForge

Search for CUDA, OpenCL, GPGPU

http://code.google.com/p/thrust

http://code.google.com/p/opencurrent

http://code.google.com/p/thrust
http://code.google.com/p/thrust/downloads/list
http://code.google.com/p/opencurrent

Development Environment
Languages, Device APIs, Compilers, Debuggers, Profilers, etc.

Your GPU Computing Application

GPU Computing Software Stack

CUDA Architecture

Foundation Libraries
Low-level Functional Libraries

Application Acceleration Engines
Middleware, Modules & Plug-ins

NVIDIA PhysX™ - the World’s Most Deployed Physics API

Major PhysX
Site Licensees

Cross Platform
Support

Middleware & Tool
Integration (APEX)

Integrated in Major
Game Engines

Diesel

Unity 3d

Hero

BigWorld

UE3

Gamebryo

Vision

Instinct

Trinigy

3ds Max

Maya

Softimage

SpeedTree

Natural Motion

Fork Particles

Emotion FX

© 2009 NVIDIA Corporation

Scaling – Grid &

Cluster Mngmnt.

© 2009 NVIDIA Corporation

GPU Management & Monitoring

Products Features

All GPUs

• List of GPUs

• Product ID

• GPU Utilization

• PCI Address to Device Enumeration

Server products

• Exclusive use mode

• ECC error count & location (Fermi only)

• GPU temperature

• Unit fan speeds

• PSU voltage/current

• LED state

• Serial number

• Firmware version

NVIDIA Systems Management Interface (nvidia-smi)

Use CUDA_VISIBLE_DEVICES to assign GPUs to process

52

Bright Cluster Manager

Includes:

 NVIDIA CUDA, OpenCL libraries and GPU drivers

 Automatic sampling of all available NVIDIA GPU metrics

 Flexible graphing of GPU metrics against time

 Visualization of GPU metrics in Rackview

 Powerful cluster automation, setting alerts, alarms and actions
when GPU metrics exceed set thresholds

 Health checking framework based on GPU metrics

 Support for all Tesla GPU cards and GPU Computing Systems,
including the most recent “Fermi” models

Most Advanced Cluster Management Solution for GPU

clusters

Copyright © 2010 Platform Computing Corporation. All Rights Reserved.53

Symphony Architecture and GPU

x64 Host Computer with

GPU support

x64 Host Computer with

GPU support

x64 Host Computer with

GPU support

x64 Host Computer with GPU support
x64 Host Computer with GPU support

x64 Host Computer with GPU support

Session Manager

Session Manager

Symphony

Repository Service

Client

Application

C# .N
E

T
 A

P
I

Client

Application

Java J
a

v
a

 A
P

I
Excel

Spreadsheet

Model C
O

M
 A

P
I

Compute Hosts

Management Hosts

Clients

EGO – Resource aware orchestration layer

Symphony Service

Director

C
U

D
A

 L
ib

ra
ri

e
sService

Instance

Manager

Service

Instance
(GPU aware)

Service

Instance

Manager

API

Service

Instance

Manager

Service

Instance

d
u
a
l
q
u
a
d
-c

o
re

 C
P

U
s

Service

Instance

Manager

Service

Instance

Host OS

Computer with GPU support

GPU 2

Service

Instance
(GPU aware)

Service

Instance
(GPU aware)

Service

Instance
(GPU aware)

GPU 1

Client

Application

C++ C
+

+
 A

P
I

C
+

+
 A

P
I

.N
E

T
A

P
I

J
a

v
a

 A
P

I
C

+
+

 A
P

I

Selecting GPGPU Nodes

© NVIDIA Corporation 2010

Learning –

Developer Resources

NVIDIA Developer Resources

VIDEO
LIBRARIES

Video Decode Acceleration
NVCUVID / NVCUVENC
DXVA
Win7 MFT

Video Encode Acceleration
NVCUVENC
Win7 MFT

Post Processing
Noise reduction / De-interlace/
Polyphase scaling / Color process

ENGINES &
LIBRARIES

Math Libraries
CUFFT, CUBLAS, CUSPARSE,
CURAND, …

NPP Image Libraries
Performance primitives
for imaging

App Acceleration Engines
Optimized software modules
for GPU acceleration

Shader Library
Shader and post processing

Optimization Guides
Best Practices for
GPU computing and
Graphics development

DEVELOPMENT
TOOLS

CUDA Toolkit
Complete GPU computing
development kit

cuda-gdb
GPU hardware debugging

Visual Profiler
GPU hardware profiler for
CUDA C and OpenCL

Parallel Nsight
Integrated development
environment for Visual Studio

NVPerfKit
OpenGL|D3D performance tools

FX Composer
Shader Authoring IDE

SDKs AND
CODE SAMPLES

GPU Computing SDK
CUDA C, OpenCL, DirectCompute
code samples and documentation

Graphics SDK
DirectX & OpenGL code samples

PhysX SDK
Complete game physics solution

OpenAutomate

SDK for test automation

http://developer.nvidia.com

4 in Japanese, 3 in English, 2 in Chinese, 1 in Russian)

10 Published books with 4 in Japanese, 3 in English, 2 in Chinese, 1 in Russian

Google Scholar

Proven Research Vision

Launched June 1st

with 5 premiere Centers

and more in review

John Hopkins University , USA

Nanyan University, Singapore

Technical University of Ostrava, Czech

CSIRO, Australia

SINTEF, Norway

Exclusive Events, Latest HW, Discounts

Quality GPGPU Teaching

Launched June 1st

with 7 premiere Centers

and more in review

McMaster University, Canada

Potsdam, USA

UNC-Charlotte,USA

Cal Poly San Luis Obispo, USA

ITESM, Mexico

Czech Technical University, Prague, Czech

Qingdao University, China

Teaching Kits, Discounts, Training

World Class Research

Leadership and Teaching

University of Cambridge

Harvard University

University of Utah

University of Tennessee

University of Maryland

University of Illinois at Urbana-Champaign

Tsinghua University

Tokyo Institute of Technology

Chinese Academy of Sciences

National Taiwan University

Premier Academic Partners

NV Research
http://research.nvidia.com

Education

350+ Universities

Supporting 100’s of Researchers

around the globe ever year

Academic Partnerships / Fellowships

GPU Computing Research & Education

Thank You!

Thank you!

Database Application

Minimize network communication

Move the analysis “upstream”

to stored procedures

Treat each stored procedure

like a “Basic Application”

in the DB itself

An App Server could also be

a “Basic Application”

A dedicated Client could also be

a “Basic Application”

CPU C Runtime CUDA C Runtime

Database Engine Stored Procedure

Client Application

or

Application Server

Data Mining, Business Intelligence, etc.

CPU
CPU

Memory
GPU

GPU

Memory

