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1. AI Robots Come of Age



Humans (NI) and Machines (AI)

 Introspectionism - 1920

Psyche

 Behaviorism      Cybernetics                   1920 - 1950

Mind (= Computer)

 Cognitivism  Symbolic AI               1950 - 1980

Brain

 Connectionism   Neural Nets (ML)          1980 – 2010

Body

 Action Science   Autonomous Robots              2010 –

Environment
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Embodied Mind  |  Mind Machine ( = Smart Machine)



Early AI Robots 
(Autonomous Mobile Robots)
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Cart (Stanford Univ.)

RHINO (U. Bonn) CoBot (CMU)

Shakey (SRI)

https://youtu.be/GmU7SimFkpU
https://youtu.be/ypE64ZLwC5w
https://youtu.be/lT-RF8TKRm0
https://youtu.be/dh2xQ35i_TQ


RoboCup (1997~)
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https://www.youtube.com/watch?v=qNaBUs7gP_A
https://www.youtube.com/watch?v=t8Ni5cB9FCc
https://www.youtube.com/watch?v=bD-UPoLMoXw
https://youtu.be/aiNq4dt97Ug


Home Robots
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PR2 Making Popcorns (TU Munich)

Dash at Hotel (Sevioke) SpotMini (Boston Dynamics)

PR2 Fetches Beer (Willow Garage)

https://youtu.be/cTCJSNjTdo0
https://youtu.be/uYH7Ot83Kuc
https://youtu.be/tf7IEVTDjng
https://youtu.be/c3Cq0sy4TBs


Human-Like Robots
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Emotion Robot Pepper (SoftBank)

Life-Like Robots (Hanson Robotics) Atlas (Google Boston Dynamics)

Humanoid Robot Nao (Aldebaran)

https://www.youtube.com/watch?v=nNbj2G3GmAo
https://www.youtube.com/watch?v=W0_DPi0PmF0
https://www.youtube.com/watch?v=rVlhMGQgDkY
https://www.youtube.com/watch?v=ER0YlLUC400&t=5s


Robot Life in a City
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https://www.youtube.com/watch?v

=gPzC88HkgcU&t=80s

Obelix (University of Freiburg, Germany)

https://www.youtube.com/watch?v=gPzC88HkgcU&t=80s


AI Robots for the 4th Industrial Revolution

10Mind (SW, Data)

Body

(HW, Device)

“Cognitive”
Smart 

Machines



Enabling Technologies for AI Robots

 Perception

▪ Object recognition

▪ Person tracking

 Control

▪ Manipulation

▪ Action control

 Navigation

▪ Obstacle avoidance

▪ Map building & localization

 Interaction

▪ Vision and voice

▪ Multimodal interaction

 Computing Power

▪ Cloud computing

▪ GPUs, parallel computing

▪ Neural processors

11



2. Deep Learning for AI Robots



Traditional Machine Learning 
vs. Deep Learning

13



Deep Learning Revolution

 Big Data + Parallel Computing + Deep Learning

 From programming to learning

 Automated- or self-programming

 Paradigm shift in S/W

 Self-improving systems

 Intelligence explosion 

https://www.youtube.com/watch?v=V1eYniJ0Rnk


Power of Deep Learning

 Multiple boundaries are n
eeded (e.g. XOR problem) 
 Multiple Units

 More complex regions are 
needed (e.g. Polygons) 

 Multiple Layers

Big Data + Deep Learning

=> 

Automatic Programming



AI / Deep Learning Growth
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AlphaGo
2016



Deep Learning for Voice and Dialogue

 Speech LSTM-RNN (Recurrent Neural Networks)

 End-to-End Memory Networks (N2N MemNet)

 CNN + RNN for Question Answering
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Sukhbaatar, Sainbayar, Jason Weston, and Rob 

Fergus. "End-to-end memory networks." Advances in 

Neural Information Processing Systems. 2015.

Gao, Haoyuan, et al. "Are You Talking to a Machine? Dataset and 

Methods for Multilingual Image Question." Advances in Neural 

Information Processing Systems. 2015.



Interaction: Conversational Interface
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SKT 

Nugu

Google 

Home

Amazon 

Echo



Deep Learning for Robotic Grasping
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(Levine et al, 2016)

(C) 2015-2016, SNU Biointelligence Lab, http://bi.snu.ac.kr/



Deep Reinforcement Learning 
for Action Control
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BRETT (Univ. of California, Berkeley)

https://www.youtube.com/watch?v=2hGngG64dNM
https://www.youtube.com/watch?v=Q4bMcUk6pcw


Deep Learning for Perception

 ImageNet Large-Scale Visual Recognition Challenge
▪ Image Classification/Localization

▪ 1.2M labeled images, 1000 classes

▪ Convolutional Neural Networks (CNNs) has been dominating the 
contest since..

• 2012 non-CNN: 26.2% (top-5 error)

• 2012: (Hinton, AlexNet)15.3% (Using GPUs)

• 2013: (Clarifai) 11.2%

• 2014: (Google, GoogLeNet) 6.7%

• (pre-2015): (Google) 4.9% 
– Beyond human-level performance
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Deep Learning for Video Analysis

 Use 3D CNNs to model the temporal patterns as well as 
the spatial patterns3D Convolut ional N eur al N etwor ks for H uman A ct ion R ecognit ion

(a) 2D convolution 
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(b) 3D convolution 

Figure 1. Comparison of 2D (a) and 3D (b) convolutions.
In (b) the size of the convolution kernel in the temporal
dimension is 3, and the sets of connections are color-coded
so that the shared weights are in the same color. In 3D
convolution, the same 3D kernel is applied to overlapping
3D cubes in the input video to extract motion features.

previous layer, thereby capturing motion information.
Formally, the value at position (x,y,z) on the j th fea-
ture map in the i th layer is given by

vx yzi j = tanh bi j+
m

P i −1

p= 0

Q i −1

q= 0

R i −1

r = 0

wpqri j m v
(x + p)(y+ q)(z+ r )
(i−1)m ,

(2)
where R i is the size of the 3D kernel along the tem-
poral dimension, wpqri j m is the (p,q,r )th value of the
kernel connected to themth featuremap in the previ-
ous layer. A comparison of 2D and 3D convolutions is
given in Figure 1.

Note that a 3D convolutional kernel can only extract
one type of features from the frame cube, since the
kernel weights are replicated across the entire cube. A
general design principle of CNNs is that the number
of feature maps should be increased in late layers by
generating multiple types of features from the same
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Figure 2. Extraction of multiple features from contiguous
frames. Mult iple 3D convolutions can be applied to con-
tiguous frames to extract mult iple features. As in Figure 1,
the sets of connections are color-coded so that the shared
weights are in the same color. Note that all the 6 sets of
connections do not shareweights, result ing in two different
feature maps on the right.

set of lower-level feature maps. Similar to the case
of 2D convolution, this can be achieved by applying
multiple 3D convolutions with distinct kernels to the
same location in the previous layer (Figure 2).

2.2. A 3D CNN A rchitecture

Basedon the3D convolution describedabove, a variety
of CNN architecturescan bedevised. In the following,
wedescribea 3D CNN architecturethat wehavedevel-
oped for human action recognition on the TRECV ID
data set. In this architecture shown in Figure 3, we
consider 7 framesof size60×40centered on thecurrent
frameasinputstothe3D CNN model. Wefirst apply a
set of hardwired kernels to generatemultiple channels
of information from the input frames. This results in
33 featuremaps in thesecond layer in 5 different chan-
nels known as gray, gradient-x, gradient-y, optflow-x,
and optflow-y. The gray channel contains the gray
pixel values of the 7 input frames. The feature maps
in the gradient-x and gradient-y channelsareobtained
by computing gradients along the horizontal and ver-
tical directions, respectively, on each of the 7 input
frames, and the optflow-x and optflow-y channels con-
tain the optical flow fields, along the horizontal and
vertical directions, respectively, computed from adja-
cent input frames. This hardwired layer is used to en-
codeour prior knowledgeon features, and this scheme
usually leads to better performance as compared to
random initialization.

3D Convolut ional N eural N etwor ks for H uman A ct ion R ecognit ion

H1: 

33@60x40 
C2: 

23*2@54x34 

7x7x3 3D 

convolution 

2x2 

subsampling 

S3: 

23*2@27x17 

7x6x3 3D 

convolution 

C4: 

13*6@21x12 

3x3 

subsampling 

S5: 

13*6@7x4 

7x4 

convolution 

C6: 

128@1x1 

full 

connnection 

hardwired 

input: 

7@60x40 

Figure 3. A 3D CNN architecture for human action recognition. This architecture consists of 1 hardwired layer, 3 convo-
lution layers, 2 subsampling layers, and 1 full connection layer. Detailed descriptions are given in the text.

We then apply 3D convolutions with a kernel size of
7× 7×3 (7×7 in the spatial dimension and 3 in the
temporal dimension) on each of the 5 channels sepa-
rately. To increase the number of feature maps, two
sets of different convolutions are applied at each loca-
tion, resulting in 2 setsof featuremaps in theC2 layer
each consisting of 23 feature maps. This layer con-
tains 1,480 trainable parameters. In the subsequent
subsampling layer S3, we apply 2×2 subsampling on
each of the feature maps in the C2 layer, which leads
to thesamenumber of featuremapswith reduced spa-
tial resolution. Thenumber of trainableparameters in
this layer is 92. The next convolution layer C4 is ob-
tained by applying 3D convolution with a kernel size
of 7× 6× 3 on each of the 5 channels in the two sets
of feature maps separately. To increase the number
of feature maps, we apply 3 convolutions with differ-
ent kernels at each location, leading to 6 distinct sets
of feature maps in the C4 layer each containing 13
feature maps. This layer contains 3,810 trainable pa-
rameters. The next layer S5 is obtained by applying
3×3subsamplingon each featuremapsin theC4 layer,
which leads to the same number of feature maps with
reduced spatial resolution. The number of trainable
parameters in this layer is 156. At this stage, the size
of the temporal dimension is already relatively small
(3 for gray, gradient-x, gradient-y and 2 for optflow-x
and optflow-y), so we perform convolution only in the
spatial dimension at this layer. The size of the con-
volution kernel used is 7× 4 so that the sizes of the
output featuremapsare reduced to1×1. TheC6 layer
consists of 128 feature maps of size 1×1, and each of
them is connected to all the 78 featuremaps in the S5
layer, leading to 289,536 trainable parameters.

By themultiple layersof convolution and subsampling,

the 7 input frames have been converted into a 128D
featurevector capturing themotion information in the
input frames. The output layer consists of the same
number of units as the number of actions, and each
unit is fully connected to each of the 128 units in
the C6 layer. In this design we essentially apply a
linear classifier on the 128D feature vector for action
classification. For an action recognition problem with
3 classes, the number of trainable parameters at the
output layer is 384. The total number of trainable
parameters in this 3D CNN model is 295,458, and all
of them are initialized randomly and trained by on-
line error back-propagation algorithm as described in
(LeCun et al., 1998). We have designed and evalu-
ated other 3D CNN architectures that combine mul-
tiple channels of information at different stages, and
our results show that this architecture gives the best
performance.

3. R elated Work

CNNsbelong to the classof biologically inspired mod-
els for visual recognition, and someother variantshave
also been developed within this family. Motivated
by the organization of visual cortex, a similar model,
called HMAX (Serre et al., 2005), has been developed
for visual object recognition. In the HMAX model,
a hierarchy of increasingly complex features are con-
structed by the alternating applications of template
matching and max pooling. In particular, at the S1
layer a still input image isfirst analyzed by an array of
Gabor filters at multiple orientations and scales. The
C1 layer is then obtained by pooling local neighbor-
hoods on the S1 maps, leading to increased invariance
to distortionson the input. TheS2 mapsareobtained

A. Karpathy, L. Fei-Fei, et al., CVPR 2014

S. Ji, K. Yu, et al., PAMI, 2013 



Deep Learning for Autonomous Driving 
(NVIDIA)
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https://www.youtube.com/watch?v=zsVsUvx8ieo


VQA Challenge (2016)

 Visual Question Answering (VQA) is a new dataset containing 
open-ended questions about images. These questions require an 
understanding of vision, language and common sense to answer.

▪ 254,721 images (MSCOCO and abstract scenes)

▪ 3 questions per image (764,163 total)

▪ 10 ground truth answers per question

▪ 3 plausible (but likely incorrect) answers per question

▪ Open-ended and multiple-choice answering tasks

 Winner (UC Berkeley & Sony) 66.9% accuracy on real-image open-
ended QA. Naver, Samsung, SNU, Postech (현재 SNU 1등 중)



Cambot (SNU)
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[Kim et al., NIPS-2016]



Deep Hypernets for Visual Dialogue

1. K.-M. Kim, C.-J. Nan, J.-W. Ha, Y.-J. Heo, and B.-T. Zhang, “Pororobot: A Deep Learning Robot That Plays Video Q&A Games”, AAAI 2015 Fall Symposium on AI for Human-Robot Interaction (AI-HRI 2015), 2015.

2. J.-W. Ha, K.-M. Kim, B.-T. Zhang, Automated Visual-Lingusitc Knowledge Construction via Concept Learning from Cartoon Videos,” In Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (AAAI 2015), 2015.

3. B.-T. Zhang, J.-W. Ha, M. Kang, Sparse Population Code Models of Word Learning in Concept Drift, In Proceedings of Annual Meeting of the Cognitive Science Society (Cogsci), 2012.
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 Deep hypernetworks with hierarchical concept structure are used as knowledge 
base for Q&A

Hierarchical formulation

Joint probability of hidden variables hi
(s) in the sth layer
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Learning is done by adjusting s(hj) 
towards maximizing likelihood P(x|W)

Preprocessing

Knowledge Base
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[Kim et al.,

IJCAI-2017]



Image 개수 : 

Word  개수 : 

Episode 개수 : 

Learning from Cartoon Videos
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[Ha et al.,  AAAI-2015]



Pororobot (SNU)

28

[Ha et al., AAAI-2015]

https://www.youtube.com/watch?v=OtkEkLpjs3s


AUPAIR: Autonomous Personal AI 
Robot

AUPAIR (SNU & Surromind Robotics)

Winning the RoboCup@Home 2017

http://mnews.joins.com/article/21823070#homehttps://www.youtube.com/watch?v=a2ZJTpbMWsQ

http://mnews.joins.com/article/21823070#home
http://mnews.joins.com/article/21823070#home
https://www.youtube.com/watch?v=a2ZJTpbMWsQ
http://mnews.joins.com/article/21823070#home


3. New AI



Human Intelligence and Artificial Intelligence



Dual Process Theories of Mind



New AI (System 1) and Old AI (System 2)

Old AINew AI



Humans (NI) and Machines (AI)

 Introspectionism - 1920

Psyche

 Behaviorism      Cybernetics                   1920 - 1950

Mind (= Computer)

 Cognitivism  Symbolic AI               1950 - 1980

Brain

 Connectionism   Neural Nets (ML)          1980 – 2010

Body

 Action Science   Autonomous Robots              2010 –

Environment
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Embodied Mind  |  Mind Machine ( = Smart Machine)



Autonomous Machine Learning
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1G: Supervised Learning
(1980s~2000)

2G: Unsupervised Learning
(2000~Present)

3G: Autonomous Learning
(Next Generation)

•Decision Trees
•Kernel Methods
•Multilayer Perceptrons

•Deep Networks
•Markov Networks
•Bayesian Networks

•Complex Adaptive Systems
•Perception-Action Cycle
• Lifelong Continual Learning

ⓒ 2005-2015 SNU Biointelligence Laboratory, http://bi.snu.ac.kr/



Future of AI
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Narrow AI

AI with Deep Learning

(Embodied Brain-Like) Cognitive AI

Superhuman AI

Agency

1990 2010 2020

Follows given 

goals and methods

Works out own methods,

follows given goals

Works out 

own goals

20301980

Human-Level AI

Modified from Eliezer Yudkowsky & David Wood

2050

Free Will

Technology

Time

Parallel Computing

Autonomous

Sequential

Reactive


