Deep Learning Applications in Medicine: Present and Future Perspectives Based on Experience

2017.10.31 NVIDIA Deep Learning Day

지능정보기술연구원 김휘영 PhD
astaria82@gmail.com
Contents

• MR Image based Pseudo-CT Image Synthesis using Conditional Generative Adversarial Network

• MR Image based Gleason Score Classification for Prostate Cancer Patients

• Deep Learning in Medicine
MR Image based Pseudo-CT Image Synthesis using Conditional Generative Adversarial Network

2017.10.31 NVIDIA Deep Learning Day

지능정보기술연구원 김휘영 PhD
astaria82@gmail.com
Image-guided RT Planning

Planning CT

During Treatment
MR Image-based RT Planning

• Patients are exposed to radiation during CT imaging
 • 0.4 % of cancers were due to CT scanning (Hall et al. 2007)

→ not suitable for real-time/daily adaptive RT

• MR-based RT benefits:
 • Non-exposure of X-ray radiation
 • Superior and multiple tissue contrast compared w/ CT
 • Reduced examination time and cost
 • Benefits to MR-LINAC
Need to estimate CT Image

- CT scan provides Hounsfield units (HU)
 - A normalized value of the linear attenuation coefficient
 - Essential for dose calculation in radiation treatment planning system (RTPS)
 - To consider tissue inhomogeneity

- MRI itself is cannot be directly used for treatment planning

- Estimate CT image (pseudo CT, pCT) from MR image

- Intensity-based & Atlas-based
Objective

1. Learning w/ 3D CNN or GAN
2. Estimate pCT
3. Learning based
4. Planning on pCT
5. Directly estimate?
Dataset

• CT-MR image pairs of **19 glioblastoma patients**
 • From TCIA (the Cancer Imaging Archive) open medical database
 • http://www.cancerimagingarchive.net/

• TCGA-GBM (The Cancer Genome Atlas Glioblastoma Multiforme)
 • Multi-institutional data (Henry Ford, UCSF, MDACC, Emory, Duke, …)
 • CT, MR, Pathologic sildes, Dx (with genomic data)
 • 262 patients, 575 studies w/ 481,158 images (73.5 GB)

• Candidate selection criteria
 • Has CT and MR image pairs (**interval within 1 month**)
 • No significant noise/motion artifact

pix2pix

- P. Isola et al., Image-to-Image Translation with Conditional Adversarial Networks, arXiv: 1611.07004v1
Conditional Generative Adversarial Network

- **G (generator)** is a fully connected network
 - to **generate pseudo CT images** \(G(C, z) \)
 - from a random noise vector \(z \)
 - under the condition \(C \) (corresponding MR image)

- **D (discriminator)** is a convolutional neural network
 - discriminate btw/ an real CT image (ground truth) and an estimated pseudo-CT image.

- The **G** tries to minimize objective function against the **D** which tries to maximize it (min-max problem)

\[
\mathcal{L}_{cGAN}(G, D) = \mathbb{E}_{x,y \sim p_{data}(x,y)}[\log D(x, y)] + \mathbb{E}_{x \sim p_{data}(x), z \sim p_z(z)}[\log(1 - D(x, G(x, z)))] \tag{1}
\]

\[
\mathcal{L}_{L1}(G) = \mathbb{E}_{x,y \sim p_{data}(x,y), z \sim p_z(z)}[\|y - G(x, z)\|_1].
\]

Our final objective is

\[
G^* = \arg \min_G \max_D \mathcal{L}_{cGAN}(G, D) + \lambda \mathcal{L}_{L1}(G).
\]
Conditional Generative Adversarial Network

\[Z \sim N(\mu, \sigma) \]
random noise

\[G \quad \text{(generator)} \]

\[\text{Real or Fake} \]

\[\text{D} \quad \text{(discriminator)} \]

real MR

real CT

pseudo CT
Examples
Best case (DSC = 0.986)

MR

pseudo CT

real CT (ground truth)
Worst case (DSC = 0.766)
Discussion and Conclusions

• Generated pseudo-CT images well reconstructed anatomical boundaries but there were discrepancies in cavities and eye ball.

• Training with more dataset will overcome overfitting and thus enhance the quality of pseudo-CT synthesis.

• This results showed that our proposed method is feasible for predicting pseudo-CT images from their corresponding MR images.

• This technique has a potential to enable us to establish MR-based adaptive RT in clinic.
Acknowledgement

- 서울대학교 융합과학기술대학원 예성준 교수님
- 분당 서울대병원 영상의학과 이경준 교수님
- 지능정보기술연구원 이광희, 박대영 연구원

- The results shown here are in whole or part based upon data generated by the TCGA Research Network: http://cancergenome.nih.gov/
MR Image based Gleason Score Classification for Prostate Cancer Patients

2017.10.31 NVIDIA Deep Learning Day

지능정보기술연구원 김휘영 PhD
astaria82@gmail.com
Prostate Cancer Diagnosis

![Prostate Cancer Diagram](image_url)

- **Normal prostate**
- **Stage I**: Normal prostate
- **Stage II**: Early stage cancer
- **Stage III**: Advanced stage cancer
- **Stage IV**: Metastatic cancer

Prostate cancer

Stage I: Normal prostate

Stage II: Early stage cancer

Stage III: Advanced stage cancer

Stage IV: Metastatic cancer
A system of grading prostate cancer tissue based on how it looks under a microscope (pathologic image)

Range: 2~10

Indicates how likely it is that a tumor will spread
Gleason Grade Group

Grade Group 1 (Gleason score ≤ 6): Only individual discrete well-formed glands

Grade Group 2 (Gleason score 3+4 = 7): Predominantly well-formed glands with lesser component of poorly-formed/fused/cribriform glands

Grade Group 3 (Gleason score 4+3 = 7): Predominantly poorly formed/fused/cribriform glands with lesser component of well-formed glands

Grade Group 4 (Gleason score 4+4 = 8; 3+5 = 8; 5+3 = 8): (1) Only poorly-formed/fused/cribriform glands or (2) predominantly well-formed glands and lesser component lacking glands or (3) predominantly lacking glands and lesser component of well-formed glands

Grade Group 5 (Gleason scores 9-10): Lacks gland formation (or with necrosis) with or without poorly formed/fused/cribriform glands

Objective

• Find quantitative multi-parametric MRI biomarkers for determination of Gleason Grade Group in prostate cancer
Data

- Total 182 findings (lesions) from 162 cases
 - 112 for training set
 - 70 for test set (release date w/o truth: Jun 5, 2017)

- 4 sets of MRI scan data
 - T2-weighted (axial and sagittal)
 - Dynamic contrast-enhanced (DCE)
 - Apparent diffusion coefficient (ADC)
 - Diffusion weighted imaging (DWI)

- w/ Lesion location (not a mask) and known GGG

<table>
<thead>
<tr>
<th>Group</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>36</td>
<td>41</td>
<td>20</td>
<td>8</td>
<td>7</td>
</tr>
</tbody>
</table>
MRI Sequences

- T2-weighted (axial)
- DCE
- ADC
Masking

• Manual contouring (Courtesy of Dr. Woo)
Textural Feature Map

- Calculated textural features of 5x5 image patches for each voxel
Experiment #1 (ResNet50)

- Trained w/ 7 GTX 1080

Original Image (40 x 40) Texture Feature Image (40 x 40)

Combined Image (40 x 40 x 6)
Result #1

• Validation set test accuracy = \(\sim 25 \% \)

• Lack of training data
• Data imbalance
Experiment #2 (XGboost)

- Tree-ensemble method
 - w/ gradient boosting

Training loss
\[
\sum_{i=1}^{n} l(y_i, \hat{y}_i) + \sum_{k} \Omega(f_k), f_k \in F
\]

Complexity of the tree
- # of nodes, depth, L2 norm of leaf weights

Input: age, gender, occupation, ...

Does the person like computer games

age < 15
- Y
- N

is male?
- Y
- N

prediction score in each leaf
- +2
- +0.1
- -1
1st Order Features

- w/ original images of each MRI sequences
- Derived w/ Intensity volume histogram

\[P(I) = \frac{\text{number of pixels with gray level } I}{\text{total number of pixels in the region of interest}} \]

- Mean
 \[\text{mean} = E[I] = \sum_{I=0}^{N_g-1} I \cdot P(I), \text{ where } N_g \text{ is the number of exist gray levels} \]

- SD
 \[SD = \frac{1}{N_g} \sqrt{\sum_{I=0}^{N_g-1} (I - \text{mean})^2} \]

- Mean skewness
 \[\text{Skewness} = \frac{1}{SD^3} \sum_{I=0}^{N_g-1} (I - \text{mean})^3 P(I) \]

- Mean kurtosis
 \[\text{Kurtosis} = \frac{1}{SD^4} \sum_{I=0}^{N_g-1} (I - \text{mean})^4 P(I) \]
Result #2

- Validation set test accuracy: Around **80%**
 - (Validation set = 33 % of whole training set)
 - w/ all sequences: 31.65 %
 - T2ax: 79.35 %
 - T2sag: 82.76 %
 - ADC: 73.40 %
 - DWI: 80.67 %
 - DCE: 85.71 %

- Final test result: **0.1022** (quadratic weighted kappa, 0.2772 for 1st place team)
- Achieved 8th highest score (out of 143 participants)
Discussion and Conclusions

• Data preprocessing was done successfully.
• Data augmentation was needed because of lack of data and imbalance among groups.

• In case of ResNet50 model, prediction accuracy was quite low.
 • Lack of data and time
• Using XGboost method, we got meaningful prediction accuracy around 80% but not for test data (top 8th)
• For further research, various data augmentation methods and other deep learning models can be applied in this problem.
Acknowledgement

• 서울대학교 융합과학기술대학원 예성준 교수님
• 서울대병원 영상의학과 조정연 교수님
• 국군대전병원 영상의학과 우성민 선생님
• 서울대학교 융합과학기술대학원 이지민 연구원
• 조형주 연구원
Deep Learning in Medicine

2017.10.31 NVIDIA Deep Learning Day

지능정보기술연구원 김휘영 PhD
astaria82@gmail.com
Traditional Machine Learning

Make a Program to get desired output from corresponding input data

INPUT ➔ Feature Extraction ➔ Classifier ➔ OUTPUT
Paradigm shift

Simply GET a Program (automatically!) with your data
Data is ALL we need
AI beats medical doctors

Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs

Varun Gulshan, PhD; Lily Peng, MD, PhD; Marc Coram, PhD; Martin C. Stumpe, PhD; Derek Wu, BS; Arunachalam Narayanaswamy, PhD; Subhashini Venugopalan, MS; Kasumi Widner, MS; Tom Madams, MEng; Jorge Cuadros, OD, PhD; Ramasamy Kim, OD, DNB; Rajiv Raman, MS, DNB; Philip C. Nelson, BS; Jessica L. Mega, MD, MPH; Dale R. Webster, PhD

Seo et al., Kor J Ophthalmol (2009)

Gulshan et al., JAMA (2016)
Will AI replace doctors?

AI Lawyer “Ross” Has Been Hired By Its First Official Law Firm

NVIDIA, Massachusetts General Hospital Use Artificial Intelligence to Advance Radiology, Pathology, Genomics

Posted on December 25, 2016 by Aaron
What we expected

Malignancy: high
Spiculation: yes
Calcification: none
...

Probability of being diagnosed with cancer within a 12 month time frame is **85%**

Deep Learning can do this !!
Data Science Bowl 2017

- Kaggle grand challenge
 - Make better lung cancer detection model
 - 2017.01.12 ~ 2017.04.12
 - Total 100,000 $ prizes

- Ranked in the top of 2.5 %
 - out of 1972 teams
 - Accuracy: around 77 %
• Find quantitative multi-parametric MRI biomarkers for determination of Gleason Grade Group in prostate cancer

• Validation set test accuracy: Around 80% (w/ DCE sequence)
• Final test result: 0.1022 (quadratic weighted kappa, 0.2772 for 1st place team)
• Achieved 8th highest score (out of 143 participants)
Being a detective

• Prediction of being diagnosed w/ cancer within a year
 • ONLY with imaging diagnosis

It is a dog

It is a dog, a bulldog. I can see dirt on the dog. (S)he will probably get sick if the dog mistakenly swallows something while (s)he rolled in a dirty spot.
AI can do what humans do

Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs

Seo et al., Kor J Ophthalmol (2009)

Gulshan et al., JAMA (2016)
Can we beat Google?

Technique?

inception modules

stem

output classifier

auxiliary classifiers

DATA!!!
Can we make Watson for oncology?

IBM Closes Deal to Acquire Merge Healthcare

0.7 billion $ (약 8천억)

50억원 / year
Again, DATA is all we need

Image data → INPUT → COMPUTER → OUTPUT → Ground truth (Label)

Feature scores of each solitary pulmonary nodules
By 4 radiologists

1300 patients

BIG DATA & DEEP LEARNING
Lack of training data
Will AI replace doctors?

- I will say NO

- The value of high-quality data will rapidly increase
 - Only physicians can make high-quality (reliable) medical data

- AI extends the extent of expertize and gives new perspectives
 - w/ commoditization of deep learning tools (like MS words and excel)
Virtual PET Images from CT Data Using Deep Convolutional Networks: Initial Results

Avi Ben-Cohen¹, Eyal Klang², Stephen P. Raskin², Michal Marianne Amitai², and Hayit Greenspan¹

¹Tel Aviv University, Faculty of Engineering, Department of Biomedical Engineering, Medical Image Processing Laboratory, Tel Aviv 69978, Israel
²Sheba Medical Center, Diagnostic Imaging Department, Abdominal Imaging Unit, affiliated to Sackler school of medicine Tel Aviv University, Tel Hashomer 52621, Israel

Paper accepted @ SASHIMI2017 workshop, MICCAI 2017
AI has no responsibility
Thank you for your attention