

DEEP

LEARNING INSTITUTE

Network Deployment

Steve Byun

Sr. Solution Architect NVIDIA Corporation

Part 1: Inference using DIGITS

PART 1: INFERENCE USING DIGITS

Neural network training and inference

DEEP LEARNING INSTITUTE

CCTV 서비스

서비스 서버

딥러닝 학습 서버

DOCKER

서버 설정 Prepare System (H/W, OS) Install NVIDIA driver Install NVDOCKER

CUDA 개발 프로그래밍

docker pull nvidia/cuda docker run -it nvidia/cuda:8.5 딥러닝 학습 환경

docker pull nvidia/digits docker pull tensorflow/tensorflow:lastest-gpu

docker run 옵션 nvidia/digits

PART 1: INFERENCE USING DIGITS

DIGITS: Web based interface of Caffe and Torch

Open Your Lab Page

Part 2: Inference using pycaffe

PART 2: INFERENCE USING PYCAFFE Pycaffe APIs

- caffe.Net is the central interface for loading, configuring, and running models.
 caffe.Classsifier and caffe.Detector provide convenience interfaces for common tasks.
- **caffe.SGDSolver** exposes the solving interface.
- caffe.io handles input / output with preprocessing and protocol buffers.
- **caffe.draw** visualizes network architectures.
- Caffe blobs are exposed as numpy ndarrays for ease-of-use and efficiency.

PART 2: INFERENCE USING PYCAFFE Pycaffe APIs

Open Your Lab Page

PART 2: INFERENCE USING PYCAFFE

caffe.io.Tranformer: Tips

- set_transpose & set_channel_swap: set_transpose is defined for changing the dimensions of the input image. set_transpose of an input of the size (227,227,3) with parameters (2,0,1) will be (3,227,227). Applying set_channel_swap will preserve the order ((3,227,227)) but change it for example, from RGB to BGR
- set_raw_scale: Set the scale of raw features s.t. the input blob = input * scale.
 While Python represents images in [0, 1], certain Caffe models like CaffeNet and AlexNet represent images in [0, 255] so the raw_scale of these models must be 255.

Part 3: NVIDIA TensorRT

TENSORRT

Maximum Performance for Deep Learning Inference

- High-performance framework makes it easy to develop GPU-accelerated inference
 - Production deployment solution for deep learning inference
 - Optimized inference for a given trained neural network and target GPU
 - Solutions for Hyperscale, ADAS, Embedded
 - Supports deployment of 32-bit or 16-bit inference

developer.nvidia.com/gpu-inference-engine

TENSORRT

Maximum Performance for Deep Learning Inference

- High-performance framework makes it easy to develop GPU-accelerated inference
 - Production deployment solution for deep learning inference
 - Optimized inference for a given trained neural network and target GPU
 - Solutions for Hyperscale, ADAS, Embedded
 - Supports deployment of 32-bit or 16-bit inference

developer.nvidia.com/gpu-inference-engine

NVIDIA DRIVE PX 2

TENSORRT Optimizations

- Fuse network layers
- Eliminate concatenation layers
- Kernel specialization
- Auto-tuning for target platform
- Select optimal tensor layout
- Batch size tuning

OPTIMIZED INFERENCE RUNTIME

TENSORRT Performance

	BATCH SIZE	PERFORMANCE	POWER EFFICIENCY
Tesla M4	128	1153 images/s	20 images/s/W
Jetson TX1	2	133 images/s	24 images/s/W

PART 3: NVIDIA TENSORRT Two Phases

- Build: optimizations on the network configuration and generates an optimized plan for computing the forward pass
- **Deployment:** Forward and output the inference result

Supported layers

- Convolution: 2D
- Activation: ReLU, tanh and sigmoid
- Pooling: max and average
- ElementWise: sum, product or max of two tensors
- LRN: cross-channel only
- Fully-connected: with or without bias
- SoftMax: cross-channel only
- Deconvolution

Scalability: Output/Input Layers can connect with other deep learning framework (e.g. caffe) directly

Open Your Lab Page

PART 3: NVIDIA TENSORRT Optimizations

- Layers with unused output are eliminated to avoid unnecessary computation
- Vertical layer fusion: Convolution, bias, and ReLU layers are fused to form a single layer
- Horizontal layer fusion: combining layers that take the same source tensor and apply the same operations with similar parameters

Optimizations: Vertical Layer Fusion

Optimizations: Horizontal layer fusion

Open Your Lab Page

WHAT'S NEXT

TAKE SURVEY

...for the chance to win an NVIDIA SHIELD TV.

Check your email for a link.

ACCESS ONLINE LABS

Check your email to access more DLI training online.

ATTEND WORKSHOP

Visit www.nvidia.com/dli for workshops in your area.

JOIN DEVELOPER PROGRAM

Visit https://developer.nvidia.com/join for more.

www.nvidia.com/dli