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Neural Information Processing Systems (NIPS 2015)

« QOral talks:15
« Spotlights: 37
« Accepted papers: 403

¢ Single session: more
than 3000 participants
are listening to the
single presentation.

e 7pm —12am (5hr)
poSster session every
day
Look at the poster session
how it does look =

From Neil Lawrence’s Blog
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Asian Conference on Machine Learning

ACML 2017  Conference ~  Authors & Contributors ~  Participants ~  Misc ~

The 9th Asian Conference on Machine Learning
November 15 - 17, 2017, Yonsei University, Seoul, Korea

ACML 2017

Welcome to the 9th Asian Conference on Machine Learning (ACML 2017). The
conference will take place on November 15 - 17, 2017 at Baekyang Hall of Yonsei
University campus, Seoul, Korea. We invite professionals and researchers to

discuss research results and ideas in machine learning. We seek original and
Ama" C[mfere nce un Machme Learnmg novel research papers resulting from theory and experiment of machine learning.
The conference also solicits proposals focusing on disruptive ideas and paradigms
within the scope. We encourage submissions from all parts of the world, not only confined to the Asia-Pacific region.

As machine plays critical role in various fields of industry, machine learning researchers needed to gather and share new ideas and achievements at
a forum. ACML has begun to take place annually over the Asian regions since 2009. This is the 9th Conference to be held in Seoul, Korea after
Hamilton, New Zealand (2016), Hong Kong, China (2015), Nha Trang, Vietnam (2014), Canberra, Australia (2013), Singapore (2012), Taoyuan,
Taiwan (2011), Tokyo, Japan (2010), and Nanjing, China (2009). The conference has contributed to understanding the machine leaning, bringing
inspiration to scientists, and applying the technologies to industries. This conference will consist of informative and integrated programs as traditions
of the previous ones.

Yonsei University, one of most prestigious universities, is about 130 years old historical campus in Korea. The University street called "Sinchon" is connected to Ewha Womans
University and Hongik University as one of youth hotspots. You can walk along ‘Sinchon’s Pedestrian Friendly Street’ which is full of cafes, fashion items, and beauty goods. The district
is located at the heart of Seoul with easy access to cultural and attractive sites. Seoul is ranked by Asian tourists as their favorite world city three years in a row. Come experience the
history and excitement of modern Seoul.

Authors & Contributors

+ Call for Papers

Speakers
The confirmed speakers are:

+ Bernhard Schélkopf - keynote

Professor and Director of Max Planck Institute for Intelligent Systems, Germany

+ Tom Dietterich - keynote
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Contents

* Nonparametric methods for estimating
density functions

— Nearest neighbor methods
— Kernel density estimation methods

* Metric learning for nonparametric methods
— Generative approach for metric learning

* Theoretical properties and applications

2
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Representation of Data

Data space

RD

« Each datum is one point
In a data space
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Nearest Points

airplane

deer

ship
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Nearest Points

automobile  truck cat ship ship
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Classification with Nearest Neighbors

®

- § B - W: class 1
m * %: class 2
] * Data space

RD

« Use majority voting (k-nearest neighbor
classification)

« k=9 (five ®m/four%)

« Classify a testing point x (a) as class 1 (m).
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Bayes Classification

« Bayes classification using underlying density
functions: Optimal

p1(x) > p2(x) | p1(x) < p2(x) =» Error:

1 .
5 / min(ps, po]dx
Bayes risk

o

In general,
we do not know the underlying density.

,, Seoul National University 10 ':J'(QBO,T_CS



Nearest Neighbors and Bayes Classification

« Surrogate method of using underlying density
functions.

D = {Xi,yi}g\il ~ D1 (X)7p2(x)

Count nearest neighbors!

p) 2 pa(e)? = OO

Seoul National University 11 Q& BOTILS



INFORMATION
THEORY

Pattern

Classification

N o
550 A

« Tomas M. Cover (8/7/1938~3/26/2012) ° Peter E. Hart (Bone c. 1940s)
- BS. in Physics from MIT * MS., Ph.D. from Stanford

« Ph.D. in EE from Stanford * A strong advocate of artificial

- Professor in EE and Statistics, Stanford ~ Intelligence inindustry
 Currently Group Senior Vice
President at the Ricoh Company,
Ltd.
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This Week's Citation Classic

Cover T M & Hart P E. Nearest neighbor pattern classification.
IEEE Trans. Inform. Theory l"l'ﬁ:ll-?. 1967.
[Dept. Electrical Engineering, Stanford Univ.. Stanford,
and Stanford Res. Inst., Menlo Park, CA)

CC/NUMBER 13
MARCH 29, 1982 .

The nearest neighbor decision rule assigns
to an unclassified sample the classification
of the nearest of a set of previously classi-
fied samples. This paper proves that the
probability of error of the nearest neighbor
rule is bounded above by twice the Bayes
minimum probability of error. In this sense,
it may be said that half the classification in-
formation in an infinite sample set is con-
tained in the nearest neighbor. [The 5C/® in-
dicates that this paper has been cited over
190 times since 1967.]

Thomas M. Cover
Departments of Statistics and
Electrical Engineering
Stanford University
Stanford, CA 94305

March 5, 1982

“Early in 1966 when | first began teaching
at Stanford, a student, Peter Hart, walked
into my office with an interesting problem.
He said that Charles Cole and he were using
a pattern classification scheme which, for
lack of a better word, they described as the
nearest neighbor procedure. This scheme
assigned to an as vet unclassified observa-
tion the classification of the nearest
neighbor. Were there any good theoretical
properties of this procedure? Of course the
motivation for such a classification rule
must go back to prehistoric times. The idea
is that ‘things that look alike must be alike.”

“The problem seemed extremely inviting
from a theoretical point of view. We began
meeting for two or three hours every after-
noon in an attempt to find some distribu-
tion-free properties of this classification
rule. By distribution-free, | mean properties
that are true regardless of the underlyin
joint distribution of the categories an
observations. Obviously, we could not hope
to prave that a procedure always has, for ex-
ample, a zero probability of error, because

there are many cases where the observa-
tions yield no information about the under-
lying category. In those problems, the goal
would be more modest. Apparently, the
proper goal would be to relate the probabili-
ty of esror of this procedure to the minimal
probability of error given complete statisti-
cal information, namely, the Bayes risk.

“After some efiort, we were able to prove
that the nearest neighbor risk is always less
than the Baves risk plus onesixth (if |
remember correctly). This was the sort of
result we were looking for, but it seemed
quite unnatural. Also, it was nat a very am-
bitious bound when the Bayes risk is near
zero. We would have preferred to relate
risks by a factor rather than by an additive
constant. Soon thereafter we found what we
were looking for. The nearest neighbor risk
is less than twice the Baves risk for all
reasonable distributions and for any number
of categories. Thus ancient man was proved
right—"things that look alike are alike'—
with a probability of error that is no worse
than twice the probability of error of the
most sophisticated modern day statistician
using the same information. Moreover, we
were socn able to prove that our bound was
the best possible. So the search was over,

“The simplicity of the bound and the
sweeping generality of the statement, com-
bined with the obvious simplicity of the
nearest neighbor rule itself, have caused this
result to be used by others, thus accounting
for the high number of citations. Since the
Eropetties of the nearest neighbor rule can

e easily remembered, the bound vields a
benchmark for other more sophisticated
data analysis procedures, which sometimes
actually perform worse than the nearest
neighbor rule. This is probably due to the
fact that more ambitious rules have too
many parameters for the data set.

“It should be mentioned that we had to
exclude a certain technical set of joint
distributions from the proof of our theorem.
The attendant measure-theoretic difficulties
in eliminating the so-called singular distribu-
tions almost delayed the publication of our
paper. It was wise that we did not hold up
publication, because the theorem was not
proved in total generality until ten years
later in Charles Stone’s 1977 paper in the
Annals of Statistics.! The result remains the
same, but now it applies to all possible prob-
ability distributions.”

Early in 1966 when | first began
teaching at Stanford, a student,
Peter Hart, walked into my
office with an interesting
problem.

Charles Cole and he were using
a pattern classification scheme
which, for lack of a better word,
they described as the nearest
neighbor procedure.

The proper goal would be to
relate the probability of error of
this procedure to the minimal
probability of error ... namely,
the Bayes risk]

i. Stone C I. Consisten! nonparametric regression. Ann. Seagist. §:595-645, 1977,




Nearest Neighbors and Bayes Risk

XNN — X, uniformly!
p(x) ~ p(XnN)

e [-NN error
€E(k=1) = / P1 (X)pQ(X) dx < 2E1Bcr,yes(1 - EBayes)

p1(x) + p2(x)

* k-NN error
EBayes = €(k=c0)

IN

o < €(k=2) < €(k=1) < 2E’Bayes(1_E’Ba’yes)
[T. Cover and P. Hart, 1967]
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Bias in the Expected Error

Assumption:

A nearest neighbor appears at nonzero dy > 0.

ENNgf p1(x)p2(x) Ix (D

X) + p2(x)
Eq, [d3]x
4D/ : N‘ V2p2+p2V2p1 plPZ(V 1tV p2) (2

N/ e

Metric-dependent terms

@: Asymptotic NN Error
@): Residual due to Finite Sampling .

R. R. Snapp et al. (1998) Asymptotic expansions of the k nearest neighbor risk, The Annals of Statistics
Y.-K. Noh et al. (2010) Generative local metric learning for nearest neighbor classification, NIPS
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Metric Dependency of Nearest Neighbors

» Different metric changes class belongings

Classified as red Classified as blue

Mahalanobis-type distance:
d(x;,%x;) = \/(X,L —x;)TA(x; —x;5), A>0

%}Eﬁ@ Seoul National University 16



Conventional Idea of Metric Learning

(. > ( R
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Many Data Situation with Overlap

> o - > .
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Conventional Metric Learning
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Generative Local Metric Learning (GLML)
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Bayes Classification with True Model

« Two Gaussians
— same means, random covariance matrices
— Number of data: 20 per class

0.2r
21

]
N
Error

p1(x): N(p1,%1) -
p2(x): N(p2,32) o 10 2 I 100 300
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Bayes Classification with True Model

« Two Gaussians
— same means, random covariance matrices
— Number of data: 50 per class

0.2~
21

0.15
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Error

0.05-
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Dimensionality
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Bayes Classification with True Model

« Two Gaussians
— same means, random covariance matrices
— Number of data: 100 per class

0.2-
21

]
[\
Error

p1(x): N(p1,X1) T |
p2(X): N(ﬂ2722) 0 5 5 E)O 2‘(.) I'tySO 1(:)0ﬁ/3:0
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k-NN Beats True Model With Metric Learning!

Error

0.1 _ _____ \\ __________________________________ k

005\

0.2 ——True Bayes est
——Gaussian
——k-NN

O 45 e ——GLML-kNN

UEJ Y N =3000/class
=3

5 10
Dimensionality

N =1000/class

~ o ; . -
10 20 50 100 300
Dimensionality

{8) Seoul National University
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Manifold Embedding (Isomap)

Use Dijkstra algorithm
to calculate the manifold
distance from nearest
neighbor distance

=» MDS using manifold
distance

HE--SE--BiF | (X)
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Manifold Embedding (Isomap)




[somap with LMNN Metric
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[somap with GLM Metric
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Nadaraya-Watson Estimator

L Zi\il K(Xivx)yi D = {Xi7 Yi 71521
o N
> i1 K(xj,%) x; € RP

yn (x)

K(x;,x) =K (HXZ X”) K<||Xi;X||>‘
1 1 | ||2 \
= exp | ——=||x; — x
1/27TDhD P 2h?

y; € {0,1} > Classification

yi € R - Regression

[Ixi — x|
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Kernel regression (Nadaraya-Watson
regression) with metric learning

D = {Xia Y Z\i
K < x i)
exp< syl = x11?)
N
?J\N(X) _ Zi:l K(Xiax)yi

Zfil K(Xi7 X)
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Kernel regression (Nadaraya-Watson
regression) with metric learning

N
1% —%][|a
i) = 1 (1 ’
1 1 - |
— e (g -0 Ak )
\/27TDhD < 2h

Y K(xixi Ay
Zﬁil K(x;,x;A)

yn (x)
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For x & y Jointly Gaussian

 Learned metric IS not sensitive to the
bandwidth

—MSE




For x & y Jointly Gaussian

 Learned metric IS not sensitive to the
bandwidth

—MSE




Benchmark Data

NMSE
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Two Theoretical Properties for
Gaussians

* The existence of a symmetric positive definite

matrix A that eliminates the first term of the
bias.

« With optimal bandwidth h minimizing the
leading order terms, the minimum mean

sguare error is the square of bias in infinitely
high-dimensional space.

@y Seoul National University
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Diffusion Decision Model
* Choosing between two alternatives under
time pressure with uncertain information.
1 . : 500 1 Y. \ 500
o9k ¢ L 3 , ? 400 09— e e 400
08—t F _ 300 08 It 300
07- ;{*'f{- — / 200 o7t f | 200
s ool os X/ 110 3
%05&.—- 0 % %(35\\ J ‘ | - , i %
. 043;‘ / ARTY=) B 04—\3&;;3}": 1008
03 \; | 200 03} i~ 200
02—y 300 02 | --300
0.1f . Classified as 1 [|-400 0.1 Classified as 1 [|-400
Il Classified as 2 Il Classified as 2
% 2 4 6 K 5 10 12 90 % 2 4 6 K 5 10 12 90
Confidence level 0.9
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Summary

* Nearest neighbor methods and asymptotic
property

« Naradaya-Watson regression with metric
learning

 Diffusion decision making and nearest
neighbor methods

2
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THANK YOU

Yung-Kyun Noh
nohyung@snu.ac.kr
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