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10 and 12-bit 
Grayscale Technology 

Introduction 

Advances in sensor technology and image acquisition techniques in the field of 
radiology are producing high bit depth grayscale images in the range of 12 to 16-bit 
per pixel. At the same time, the adoption of displays with native support for 10 and 
12-bit grayscale is growing. These affordable displays are DICOM[1] conformant to 
preserve image quality and consistency. Furthermore, tiling together multiple such 
displays enables side-by-side digital study comparisons driven by a single system. 

Standard graphics workstations however are limited to 8-bit grayscale, which 
provides only 256 possible shades of gray for each pixel sometimes obscuring subtle 
contrasts in high density images. Radiologists often use window-leveling techniques 
to identify the region of interest that can quickly become a cumbersome and time-
consuming user interaction process. 

NVIDIA’s 10–bit and 12-bit grayscale technology allows these high quality displays 
to be driven by standard NVIDIA® Quadro® graphics boards preserving the full 
grayscale range. By using “pixel packing” the 10-bit or 12-bit grayscale data is 
transmitted from the Quadro® graphics board to a high grayscale density display 
using a standard DVI cable. Instead of the standard three 8-bit color components 
per pixel, the pixel packing allows two 10 or 12-bit pixels to be transmitted, 
providing higher spatial resolution and grayscale pixel depth as compared to an 8-bit 
system.  

As specialty hardware is not required, NVIDIA’s 10-bit grayscale technology is 
readily available for use with other radiology functions and easy to support amongst 
a wide range of grayscale panels from various manufacturers. In a preliminary study 
performed on 10 radiologists using Dome E5 10-bit vs. E5 8-bit displays in 
conjunction with Three Palms 10-bit, OpenGL accelerated WorkstationOne 
mammography application, radiologists’ performance was statistically significant on 
the 10-bit enabled display systems, some experiencing triple the read time speedup.   

This technical brief describes the NVIDIA grayscale technology, the system 
requirements and setup. It also aims to guide users through common pitfalls that 
arise when extending to multi-display and multi graphics processing unit (GPU) 
environments routinely used in diagnostic imaging and recommends best practices. 

Figure 1 shows the latest technology in digital diagnostic display systems, a Quadro 
card driving a 10 mega-pixel, 10-bit grayscale display. Figure 2 shows a 10-bit 
enabled mammography application displaying multiple modalities on multiple 
displays.   
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Supported Monitors 
The monitor should be capable of 10 and 12-bit outputs. We currently support the 
following displays. 

 NDS Surgical Imaging Dome E5 5MP and Z10 10MP display’s [2] 
 Eizo Radiforce GS520 5MP display[3] – currently in beta, to be released in 

the R190 driver. 

Supported Connectors 
 Single or Dual-link DVI  

Although single-link DVI is only capable of transmitting up to HD (1920 × 
1200), our grayscale pixel packing mechanism allows 5 MP (2560 × 2048) 
images to be sent over single-link DVI. 

 DisplayPort  
This applies to the Quadro FX 4800 and the Quadro FX 5800 that have 
DisplayPort outputs. As grayscale monitors currently only support DVI, a 
DisplayPort-to-single and dual DVI adaptors is needed at the GPU end. The 
Bizlink dongle (P/N 030-0223-0000) shown in Figure 3 has been tested and is 
recommended. 

 

Figure 3. DisplayPort to DVI Bizlink Dongle 
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glPixelStorei(GL_UNPACK_ALIGNMENT, 2); 
glTexImage2D(GL_TEXTURE_2D, 0, GL_ALPHA16UI_EXT, width, height, 0, 
GL_ALPHA_INTEGER_EXT , GL_UNSIGNED_SHORT, TextureStorage); 

glBindTexture(GL_TEXTURE_1D, lutTexId); 
glTexImage1D(GL_TEXTURE_1D, 0, 4, lutWidth, 0, GL_RGBA,  
 GL UNSIGNED BYTE, Table );

#extension GL_EXT_gpu_shader4 : enable // for unsigned int support 
uniform usampler2D texUnit0; // Gray Image is in tex unit 0 
uniform sampler1D  texUnit1; // Lookup Table Texture in tex unit 1      
void main(void)  
{                          
 vec2  TexCoord  = vec2(gl_TexCoord[0]);     
 //texture fetch of unsigned ints placed in alpha channel 
 uvec4 GrayIndex = uvec4(texture2D(texUnit0, TexCoord));  
 //low 12 bits taken only ; 
 float GrayFloat = float(float(GrayIndex.a) / 4096.0);  
 //fetch right grayscale value out of table 
 vec4  Gray      = vec4(texture1D(texUnit1, GrayFloat)); 
 // write data to the framebuffer 
 gl_FragColor  = Gray.rgba;   
} 

Application Layer  
The 10 and 12-bit grayscale image viewing application is responsible for outputing 
24-bit RGB pixels which the driver then converts to 12-bit grayscale values for 
scanout as described in the previous section. 

The application uses a shader that takes in the 12-bit grayscale value from the image 
and translates it into a 24-bit RGB pixel using a lookup table.The lookup table is 
generated to find the best RGB pixel with as little as possible differences between 
the RGB values (preferred is R=G=B) for each grayscale value in the input image. 
In essence, this process is the inverse of the driver conversion from RGB to 
grayscale. The end result is that the grayscale image on the desktop looks like a 
grayscale image on a color monitor. 

The integer texture extension, EXT_texture_integer [4] in Shader Model 4 is used to 
store the incoming grayscale image as a 16-bit unsigned integer without converting 
to floating point representation saving memory footprint by 2×. 

 

The lookup table mapping the grayscale image to 24-bit RGB values is stored as 1D 
texture. The lookup table dimensions should exactly match the bit depth of the 
grayscale values expected in incoming image so that no filtering and interpolation 
operations will be performed thus preserving image precision and fidelity. Changes 
to contrast, brightness and window level of the image are easily done by changing 
the lookup table resulting in a 1D texture download without any change to the 
sourceimage. 

  

At run time, the applicaton draws a quad that is texture mapped with the grayscale 
image. In the rasterization stage, the fragment shader is invoked for each grayvalue 
which then does a dependant texture fetch into the 1D LUT texture. The complete 
source is found in GrayScaleDemo.cpp. 
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Multi-Display Configurations 

Diagnostic imaging commonly requires multiple displays for side by side modality comparisons. 
Multi-display configurations are becoming more practical with systems capable of supporting 
multiple graphics boards that in turn drive multiple displays. A single Quadro board can drive a 
maximum of 2 displays. Depending on the available PCI slots within a system, multiple cards can be 
used to drive several displays. These multiple displays can be a mix of regular color LCD panels and 
specialty grayscale monitors. This section explains the issues that arise from such a heterogeneous 
configuration and programming pointers to address them. The full source code for the examples is 
found in the accompanying Grayscale10-bit SDK  

Multi-GPU Compatibility 
Grayscale capable Quadro boards can be mixed with other Quadro boards that can 
drive one or many side displays as shown in Table 2. These “Side Display GPU’s” 
may not yield the grayscale effect but the system will be compatible. Mixing of 
GPU’s is only guaranteed to work if the GPU’s are G80 and later.  

Note: The mixing of older cards (pre G80) is not supported in grayscale configurations.  

Table 2. Multi-GPU Compatibility 

  Grayscale GPU 

Si
de

 D
is

pl
ay

 G
P

U
  Quadro FX 3800  Quadro FX 4800 Quadro FX 5800 Quadro Plex 

Quadro NVS 290     

Quadro FX 1800     

Quadro FX 3800   X X 

Quadro FX 4800   X X 

 Quadro FX 5800 X X X  

Note: These are theoretical compatibilities. In practice, the physical system attributes such as availability of PCI 
slots and their placements will determine the final working set of cards from Table 2. The Quadro FX 5800 
requires the full 2 auxiliary power inputs and therefore is only used with lower-end Quadro cards that do not 
have any auxiliary power requirements. 
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class CDisplayWin { 
 HWND hWin; // handle to display window 
 HDC  winDC; // DC of display window 
 RECT  rect; // rectangle limits of display 
 bool primary; //Is this the primary display 
 char displayName[128]; //name of this display  
 char gpuName[128]; //name of associated GPU 
 bool  grayScale; //Is this a grayscale display 
public: 
 bool  spans(RECT r);//If incoming rect r spans this display 
  
} 
#define MAX_NUM_GPUS 4 
int displayCount = 0; //number of active displays 
//list of displays, each gpu can attach to max 2 displays  
CDisplayWin displayWinList[MAX_NUM_GPUS*2];  

DISPLAY_DEVICE  dispDevice; 
DWORD displayCount = 0; 
memset((void *)&dispDevice, 0, sizeof(DISPLAY_DEVICE)); 
dispDevice.cb = sizeof(DISPLAY_DEVICE); 
// loop through the displays and print out state 
while (EnumDisplayDevices(NULL,displayCount,&dispDevice,0)) { 
if (dispDevice.StateFlags & DISPLAY_DEVICE_ATTACHED_TO_DESKTOP) { 
 printf("DeviceName    = %s\n", dispDevice.DeviceName); 
 printf("DeviceString  = %s\n",dispDevice.DeviceString); 
 if (dispDevice.StateFlags &DISPLAY_DEVICE_PRIMARY_DEVICE) 
  printf("\tPRIMARY DISPLAY\n"); 
 DEVMODE devMode; 
 memset((void *)&devMode, 0, sizeof(devMode)); 
 devMode.dmSize = sizeof(devMode); 
 EnumDisplaySettings(dispDevice.DeviceName, ENUM_CURRENT_SETTINGS, 
     &devMode); 
 printf("\tPosition/Size = (%d, %d), %dx%d\n", 
 devMode.dmPosition.x,  devMode.dmPosition.y,devMode.dmPelsWidth, 
 devMode.dmPelsHeight); 
 HWND hWin =  
 createWindow(GetModuleHandle(NULL),devMode.dmPosition.x+50,  
 devMode.dmPosition.y+50, devMode.dmPelsWidth-50, 
 devMode.dmPelsHeight-50); 
 if (hWin) { //got a window 
  HDC winDC = GetDC(hWin); 
  // TODO - set pixel format, create OpenGL context 
 } 
 else 
  printf("Error creating window \n"); 
 }//if attached to desktop  
 displayCount++; 
} //while(enumdisplay); 

For an application using multiple GPU’s and displays it is often useful to 
programmatically find out their attributes and capabilities. This section and the 
following ones show code samples to demonstrate that in progressive detail. 
Following are some data structures used throughout the document examples. The 
CDisplayWin structure defined in CDisplayWin.[h|cpp]encapsulates the 
attributes of each display and the displayWinList is a container for all displays. 
Accessor functions have been omitted to aid readability. 

 

Following is a simple example using the Windows GDI to enumerate the attached 
displays, gets their extents and also check if the display is set as primary. The 
following code can be easily modified to include unattached displays.  
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DeviceName    = \\.\DISPLAY1 
DeviceString  = NVIDIA Quadro FX 1800 
PRIMARY DISPLAY 
Position/Size = (0, 0), 1280x1024 
 
DeviceName    = \\.\DISPLAY2 
DeviceString  = NVIDIA Quadro FX 4800 
Position/Size = (1280, 0), 2560x2048 
 
DeviceName    = \\.\DISPLAY3 
DeviceString  = NVIDIA Quadro FX 4800 
Position/Size = (3840, 0), 1600x1200 

Running this enumeration code on our 3 display example (shown in Figure 7) prints 
out the following. 

Note: The enumeration shown in this section abstracts special hardware capabilities of 
the displays such as grayscale or color capability. For such physical display details, 
we need access to the Extended display identification data (EDID)-the data 
structure provided by the computer display to the graphics card. This is described 
in the next section. 

Mixing Grayscale and Color Displays  
The previous section demonstrated how to get the general characteristics of a 
display such as extent etc, but more specific properties of monitors will decide how 
to layout our application. For example, user interface and launching elements are 
normally placed on the regular color LCD’s while the radiological images will be 
rendered to the grayscale displays. A display is defined to be grayscale compatible if 
both the monitor and the GPU attached are grayscale enabled. To determine if a 
monitor is grayscale we parse its EDID to get the model name and compare it with 
the list of enabled monitors. This EDID is provided by the NVIDIA NVAPI [5] – 
an SDK that gives low level direct access to NVIDIA GPUs and drivers on all 
windows platforms. The following example shows enumerating the attached 
displays and its associated panel and GPU string. Refer to the complete source in 
CheckGrayscale.cpp for error checking functions and the isGrayscaleGPU and 
isGrayscaleMonitor string parsing functions. 

 
// Declare array of displays and associated grayscale flag 
NvDisplayHandle hDisplay[NVAPI_MAX_DISPLAYS] = {0}; 
NvU32 displayCount = 0; 
// Enumerate all the display handles 
for(int i=0,nvapiStatus=NVAPI_OK; nvapiStatus == NVAPI_OK; i++) { 

nvapiStatus = NvAPI_EnumNvidiaDisplayHandle(i, &hDisplay[i]); 
if (nvapiStatus == NVAPI_OK) displayCount++; 

} 
printf("No of displays = %u\n",displayCount); 
 
//Loop through each display to check if its grayscale compatible 
for(unsigned int i=0; i<displayCount; i++) { 

//Get the GPU that drives this display 
NvPhysicalGpuHandle hGPU[NVAPI_MAX_PHYSICAL_GPUS] = {0};  
NvU32 gpuCount = 0; 
nvapiStatus =  
NvAPI_GetPhysicalGPUsFromDisplay(hDisplay[i],hGPU,&gpuCount); 
nvapiCheckError(nvapiStatus); 
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//Get the GPU's name as a string 
NvAPI_ShortString gpuName; 
NvAPI_GPU_GetFullName (hGPU[0], gpuName); 
printf("Display %d, GPU %s",i,gpuName); 
nvapiCheckError(nvapiStatus); 
 
//Get the display ID for subsequent EDID call 
NvU32 id; 
nvapiStatus = NvAPI_GetAssociatedDisplayOutputId(hDisplay[i],&id); 
nvapiCheckError(nvapiStatus); 
 
//Get the EDID for this display 
NV_EDID curDisplayEdid = {0}; 
curDisplayEdid.version = NV_EDID_VER; 
nvapiStatus = NvAPI_GPU_GetEDID(hGPU[0],id,&curDisplayEdid); 
nvapiCheckError(nvapiStatus); 
 
//Check if the GPU & monitor both support grayscale 
//and set the grayFlags table 
if (isGrayscaleGPU(gpuName)&& \\ 
 isGrayscaleMonitor(curDisplayEdid.EDID_Data,NV_EDID_DATA_SIZE))  
 displayWinList[i].grayScale = true; 
else 
 displayWinList[i].grayScale = false; 

} 

Moving and Spanning Windows Across Displays 
Many applications allow users to freely move windows across multiple displays. It 
may be desirable for some applications to prevent spanning a grayscale image 
window to a color display. In the event-handling code for a window move and 
resize, we query all the displays that the current window spans to check for grayscale 
compatibility. The following code snippet refers to the data structures populated in 
the previous examples to do the runtime query. 

 
LONG WINAPI winProc(HWND hWin, UINT uMsg, WPARAM wParam, LPARAM lParam) 
{ 
    switch (uMsg) { 
 case WM_SIZE: 
 RECT rect; 
 GetClientRect(hWin, &rect); 
 for (int i=0;i<displayCount;i++) { 
 //check if the window spans this display 
  if (displayWinList [i].spans(rect)) { 
  //Now check this is grayscale compatible display 
  if (!displayWinList[i].grayScale) { 
  //do something eg prevent spanning 
  } 
  } 
 } //end of for 
        break; 
 case WM_MOVE: 
 RECT rect; 
 //Repeat as above for WM_SIZE 
  
 } 
} 



 
 
 

Targgeting S
Th
wo
ha
the
mo
ref
at 
ren
Qu

Th
GP
co
aff
DC
co
cu

 

Fi

pecific G
he default beh
orks for many
andling more c
e GPUs that a
oves to a disp
fresh or drawi
all, minimizin
ndering, we us
uadro profess

he GPU Affin
PUs responsib

oncept of an af
finity mask. W
C’s affinity ma

ontext is associ
urrent will be s

gure 8. 

GPUs for 
havior is for O
y applications, 
complicated. T
are capable of 
lay connected
ing happens. I

ng user interac
se the WGL N
ional cards. 

nity for a wind
ble for the win
ffinity DC wh

When an Open
ask that is imm
iated with a w
sent to the GP

Using Aff
for OpenG

Renderin
OpenGL comm

it makes runt
Therefore, it is
f grayscale out
d to a GPU wh
In fact, some a
ction to increa
NV Affinity ex

dow is defined
ndow drawing
hich is simply a
nGL context is
mutable. For o

window DC, an
PUs specified 

finity Exten
GL Render

10 an

April 1

ng 
mands to be se
time graphics 
s desirable to 
tput. In this ca
here grayscale
applications p

ase efficiency. 
xtension [6] av

d by an affinity
g. This extensi
a device conte
s created from
on-screen draw
ny OpenGL c
in the affinity

nsion to Ta
ring 

nd 12-Bit Grays

17, 2009 | TB-0

ent to all GPU
capability che
limit grayscale

ase, when the 
 is not enabled

prevent windo
To target spec
vailable for W

y mask that co
ion also introd
ext embedded

m this DC it in
wing, when th
calls made with
y mask. 

arget Spec

scale Technolog

04631-001_v01

Us. While this 
ecking and 
e rendering to
window 
d, no screen 
w movements
cific GPUs fo

Windows on 

ontains a list o
duces the 
d with the 
nherits the 
his affinity 
h this context

ific GPUs 

gy 

 
1 14 

o 

s 
or 

f 

t 

 



10 and 12-Bit Grayscale Technology 

 
  
 April 17, 2009 | TB-04631-001_v01 15 

class CAffGPU { 
HDC     affinityDC; // Device Context of affinity gpu 
HGLRC   affinityGLRC; // OpenGL Resource Context  

public: 
init(HGPUNV* pGPU, int num); //List of GPU handles in the mask 
~ CAffGPU(); 

} ; 
unsigned int gpuCount = 0; 
CAffGPU affGPUList[MAX_NUM_GPUS] 

//Get affinity DC and RC for this GPU. 
//In the case below one GPU is associated with  
void CAffinityGPU::init(HGPUNV* hGpu, int num) { 
 // Assume just 1 GPU in the list for simplicity 
 HGPUNV  gpuMask[2]; 
 gpuMask[0] = *hGpu; 
 gpuMask[1] = NULL; 
 //Create affinity-DC 
 if (!(affinityDC = wglCreateAffinityDCNV(gpuMask)))  
  ERR_MSG("Unable to create GPU affinity DC"); 
 //Set the pixel format for the affinity-DC 
 setPixelFormat(affinityDC); 
 //Create affinity-context from affinity-DC 
 if (!(affinityGLRC = wglCreateContext(gpuDC))) 
  ERR_MSG("Unable to create GPU affinity RC"); 
} 

class CDisplayWin { 
... 

 CAffGPU* pAffinityGPU; //The list of GPU’s responsible for rendering 
this window 

... 
} ; 

We introduce another class, CAffGPU to encapsulate all the attributes for an Affinity 
GPU and the affGPUList which is a collection of CAffGPU’s.  

 

To encapsulate the displays attached to affinity GPUs, the class CAffDisplayWin is 
extended from the existing CDisplayWin class to include a pointer to the 
CAffinityGPU instance that is responsible for its rendering.  

 

The following CAffinityGPU::init initialization function shows the affinity DC 
and OpenGL resource context are created for an affinity GPU instance with just 
one physical GPU specified in the mask. Of course, multiple physical GPUs can be 
associated with one affinity GPU using this affinity mask for more complex 
rendering topologies.  
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HGPUNV curNVGPU; 
//Get a list of GPU's  
while ((gpuCount < MAX_NUM_GPUS) && wglEnumGpusNV(gpuCount, &curNVGPU)) { 
 unsigned int curDisplay = 0; //displays per current GPU 
 GPU_DEVICE  gpuDevice; 
 gpuDevice.cb = sizeof(gpuDevice); 
 affGPUList[gpuCount].init(&curNVGPU,1);  
 //loop through displays devices for this GPU 
 while (wglEnumGpuDevicesNV(curNVGPU, curDisplay, &gpuDevice)) { 
  displayWinList[displayCount].setGPUName(gpuDevice.DeviceString); 

 displayWinList[displayCount].setDisplayName(gpuDevice.DeviceName) 
 displayWinList[displayCount].setRect(gpuDevice.rect); 
 if ((gpuDevice.Flags & DISPLAY_DEVICE_PRIMARY_DEVICE))  

  displayWinList[displayCount].primary = true; 
 curDisplay++; 

 displayCount++; 
} //end of enumerating displays 

 gpuCount++; 
} //end of enumerating gpu's 

case WM_PAINT: 
 //Use the affinity context for this window 
 wglMakeCurrent(winDC, pAffinityGPU->affinityGLRC; 
 glGetString(GL_RENDERER);  
 //Drawing code goes here 
 SwapBuffers(winDC); 
 break; 

CAffinityGPU::~CAffinityGPU() { 
 if (gpuRC) 
  wglDeleteContext(gpuRC); 
 if (gpuDC) 
  wglDeleteDCNV(gpuDC); 
} 

Handles for all the system GPUs are enumerated by the following wglEnumGpusNV 
call. This example also shows another way of enumerating the display devices using 
the wglEnumGpuDevicesNV and GPU_DEVICE structure that resemble closely the 
windows GDI enumDisplayDevices and DISPLAY_DEVICE introduced earlier. 

 

 

At run time, the GPU resource context must be made current to the window DC 
before any OpenGL calls are made. This way, rendering only happens to the 
subrectangles of the windows that overlaps parts of the desktops that are displayed 
by the GPUs in the affinity mask of the resource context. 

At application shutdown, the Affinity DC must be deleted 
   

Note: When the affinity GL context is used, it is not recommended to create another 
OpenGL context from the Windows DC. Doing so may lead to unexpected 
behavior when querying OpenGL attributes using glGetString  
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Implementation Details 

The following source code is divided into 3 separate projects. The intent is for these 
components to be mixed and matched according to the user application 
requirements.  

 GrayscaleDemo.sln 

 GrayscaleDemo.[cpp|h] – An example demo application that does the 
various texture setups and allows the user to choose a grayscale image for 
display.  

 CheckGrayscale.sln 

 CDisplayWin.[cpp|h] – Class CDisplayWin that encapsulates all attributes 
of an attached display such name, extents, driving GPU, etc. 

 CheckGrayscale.cpp – Main program that enumerates all attached GPUs 
and displays using Win GDI API and uses NVIDIA NVAPI to check the 
displays that are grayscale compatible. 

 MultiGPUAffinity.sln 

 CAffGPU.[cpp|h] – Class CAffGPU that encapsulates an affinity GPU 
with its attributes such as the DC, OpenGL context, etc. 

 CAffDisplayWin.[cpp|h] – Class CAffDisplayWin that extends 
CDisplayWin to include affinity specific information. 

 MultiGPUAffinity.cpp – Main program that enumerate all GPUs creates 
the affinity data structures and does the event handling. 
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