

April 2009| TB-04631-001_v01

Technical Brief

10 and 12-bit Grayscale
Technology for NVIDIA®
Quadro®

 April 17, 2009 | TB-04631-001_v01 ii

Document Change History

Version Date Responsible Description of Change
01 April 17, 2009 SV, SM Initial Release

 April 17, 2009 | TB-04631-001_v01 iii

Table of Contents

10 and 12-bit Grayscale Technology .. 1

Introduction ... 1

System Specific Information .. 3

Supported Graphics Boards .. 3

Supported Monitors ... 4

Supported Connectors ... 4

Grayscale Monitor Settings ... 5

Grayscale Implementation ... 6

Driver Layer ... 6

Application Layer .. 7

Multi-Display Configurations .. 9

Multi-GPU Compatibility ... 9

Multiple Display Setup ... 10

Mixing Grayscale and Color Displays ... 12

Moving and Spanning Windows Across Displays ... 13

Targeting Specific GPUs for Rendering .. 14

Typical Multi-Display Configurations ... 17

Case 1. 2 5 MP Grayscale Displays Driven by 1 GPU ... 17

Case 2. 4 5 MP Grayscale Displays Driven by 2 GPUs ... 18

References ... 19

Implementation Details ... 20

 April 17, 2009 | TB-04631-001_v01 iv

List of Figures

Figure 1. 10 MPixel, 10-Bit Diagnostic Mammography Display .. 2

Figure 2. Application Enhanced Using Multiple Displays .. 2

Figure 3. DisplayPort to DVI Bizlink Dongle ... 4

Figure 4. Enable Grayscale Monitor to Display Higher Resolution .. 5

Figure 5. Driver Converts and Packs Desktop from 24-Bit Color to 12-Bit Gray 6

Figure 6. Application Level Texture Setup for 10 and 12-Bit Grayscale Display 8

Figure 7. Display Properties Before and After Displays are Enabled 10

Figure 8. Using Affinity Extension to Target Specific GPUs for OpenGL Rendering 14

Figure 9. 10 MP Grayscale Display Configuration ... 17

Figure 10. 3 GPUs Driving a 20 MP Grayscale Display .. 18

List of Tables

Table 1. Graphics Boards with 10 and 12-Bit Grayscale Support .. 3

Table 2. Multi-GPU Compatibility ... 9

Table 3. Characteristics for 10 MP Setup ... 17

Table 4. Characteristics for the 20 MP Setup .. 18

 April 17, 2009 | TB-04631-001_v01 1

10 and 12-bit
Grayscale Technology

Introduction

Advances in sensor technology and image acquisition techniques in the field of
radiology are producing high bit depth grayscale images in the range of 12 to 16-bit
per pixel. At the same time, the adoption of displays with native support for 10 and
12-bit grayscale is growing. These affordable displays are DICOM[1] conformant to
preserve image quality and consistency. Furthermore, tiling together multiple such
displays enables side-by-side digital study comparisons driven by a single system.

Standard graphics workstations however are limited to 8-bit grayscale, which
provides only 256 possible shades of gray for each pixel sometimes obscuring subtle
contrasts in high density images. Radiologists often use window-leveling techniques
to identify the region of interest that can quickly become a cumbersome and time-
consuming user interaction process.

NVIDIA’s 10–bit and 12-bit grayscale technology allows these high quality displays
to be driven by standard NVIDIA® Quadro® graphics boards preserving the full
grayscale range. By using “pixel packing” the 10-bit or 12-bit grayscale data is
transmitted from the Quadro® graphics board to a high grayscale density display
using a standard DVI cable. Instead of the standard three 8-bit color components
per pixel, the pixel packing allows two 10 or 12-bit pixels to be transmitted,
providing higher spatial resolution and grayscale pixel depth as compared to an 8-bit
system.

As specialty hardware is not required, NVIDIA’s 10-bit grayscale technology is
readily available for use with other radiology functions and easy to support amongst
a wide range of grayscale panels from various manufacturers. In a preliminary study
performed on 10 radiologists using Dome E5 10-bit vs. E5 8-bit displays in
conjunction with Three Palms 10-bit, OpenGL accelerated WorkstationOne
mammography application, radiologists’ performance was statistically significant on
the 10-bit enabled display systems, some experiencing triple the read time speedup.

This technical brief describes the NVIDIA grayscale technology, the system
requirements and setup. It also aims to guide users through common pitfalls that
arise when extending to multi-display and multi graphics processing unit (GPU)
environments routinely used in diagnostic imaging and recommends best practices.

Figure 1 shows the latest technology in digital diagnostic display systems, a Quadro
card driving a 10 mega-pixel, 10-bit grayscale display. Figure 2 shows a 10-bit
enabled mammography application displaying multiple modalities on multiple
displays.

Fi

Fi

1 Im
2 Im

gure 1.

gure 2.

mage courtesy

mage courtesy

10 MPixe
Display1

Applicatio

of NDS Surgic

of Threepalms,

l, 10-Bit D

on Enhance

cal Imaging, DO

, Inc.

10 an

April 1

Diagnostic M

ed Using M

OME Z10.

nd 12-Bit Grays

17, 2009 | TB-0

Mammogra

Multiple Dis

scale Technolog

04631-001_v01

aphy

splays2

gy

1 2

Sys

Sup

stem Sp

pported G
10
gra
en

Ta

Q

Q

Q

Q

pecific In

10 and 12-b
Windows V
Grayscale is

Graphics
0-bit grayscale
aphics boards

nabled.

able 1.

Quadro FX 38

Quadro FX 48

Quadro FX 58

Quadro Plex 2

nformat

bit grayscale cu
Vista support f
s only support

Boards
is supported
 are G80 and

Graphics
Support

00

M
R
g

00

H
D
a

00

U
R
d

2200 D2

D
2
g
v
ca

tion

urrently requir
for 10-bit gray
ted for OpenG

on Quadro FX
higher. The g

Boards wi

Mid-range card w
Recommended if
rayscale images

High-end card wit
DisplayPort outpu
lso require rende

Ultra-high end ca
Recommended fo
atasets such as 4

Dedicated desksid
 Quadro FX 5800
raphics memory
isualization and
ases.

10 an

April 1

res Windows X
yscale over DV
GL based app

X graphics bo
graphics board

th 10 and

with 1 GB of graph
the primary usag
and some 3D da

th 1.5 GB of grap
uts. Recommende
ering large 3D.

rd with 4 GB of g
or applications tha
4D geometries a

de visual comput
0 graphics board
. Recommended
large scale proje

nd 12-Bit Grays

17, 2009 | TB-0

XP.
VI is being wo
lications.

oards shown in
ds are NVIDIA

12-Bit Gra

hics memory.
ge is to display 2
ata.

phics memory an
ed for application

graphics memory
at also deal with
nd volumes.

ting system comp
s with a total of
for advanced

ection and display

scale Technolog

04631-001_v01

orked on.

n Table 1. The
A CUDA™

ayscale

2D

nd 2
ns that

y.
 large

posed of
8 GB of

y use

gy

1 3

e

10 and 12-Bit Grayscale Technology

 April 17, 2009 | TB-04631-001_v01 4

Supported Monitors
The monitor should be capable of 10 and 12-bit outputs. We currently support the
following displays.

 NDS Surgical Imaging Dome E5 5MP and Z10 10MP display’s [2]
 Eizo Radiforce GS520 5MP display[3] – currently in beta, to be released in

the R190 driver.

Supported Connectors
 Single or Dual-link DVI

Although single-link DVI is only capable of transmitting up to HD (1920 ×
1200), our grayscale pixel packing mechanism allows 5 MP (2560 × 2048)
images to be sent over single-link DVI.

 DisplayPort
This applies to the Quadro FX 4800 and the Quadro FX 5800 that have
DisplayPort outputs. As grayscale monitors currently only support DVI, a
DisplayPort-to-single and dual DVI adaptors is needed at the GPU end. The
Bizlink dongle (P/N 030-0223-0000) shown in Figure 3 has been tested and is
recommended.

Figure 3. DisplayPort to DVI Bizlink Dongle

Grayscale M
W
NV
mo
gra
ma

1.

2.

3.

4.

5.

6.

Fi

Monitor S
When a grayscal

VIDIA driver
ode. Therefor
ayscale. The o
aximum resolu

Open the D

Select the S

Click on Ad

Select the M

Uncheck th

Click Apply

gure 4.

Settings
le compatible
r automatically
re, there are no
only setting req
ution of 2560

Display Prope

Settings tab.

dvanced.

Monitor tab.

he Hide modes

y. The maximu

Enable G
Resolutio

monitor is co
y detects it and
o control pane
quired is to en
× 2048. Follo

rties.

s that this mo

um resolution

rayscale M
on

10 an

April 1

onnected to a
d immediately
el settings to e
nable the grays
ow these simp

onitor cannot

is now set to

Monitor to D

nd 12-Bit Grays

17, 2009 | TB-0

suitable NVID
y switches to p
enable and dis
scale monitor

ple steps.

t display chec

2560 × 2048.

Display Hig

scale Technolog

04631-001_v01

DIA board, th
packed pixel
sable 10-bit
to display at a

ck box.

.

gher

gy

1 5

he

a

Gra

Driv

ayscale

ver Layer
On
me
RG
for
fin
va

Fi

Implem

r
n grayscale en
echanism that
GB desktop is
rmula and the

nally shipped t
alues just using

gure 5.

mentatio

nabled Quadro
t is transparen
s first converte
en two 12-bit g
to the monitor
g a single-link

Driver Co
Color to 1

on

o boards, the d
nt to the deskto
ed to 12-bit gr
gray values are
r. This pixel p
DVI (that is n

onverts and
12-Bit Gray

10 an

April 1

driver implem
op and to the
rayscale using
e packed into

packing allows
normally limit

d Packs De
y

nd 12-Bit Grays

17, 2009 | TB-0

ments a pixel p
application. T
the NTSC co
1 RGB DVI

s displaying of
ted to HD res

esktop from

scale Technolog

04631-001_v01

acking
The 24-bit
olor conversio
pixel and

f 5 MP gray
olution).

m 24-Bit

gy

1 6

on

10 and 12-Bit Grayscale Technology

 April 17, 2009 | TB-04631-001_v01 7

glPixelStorei(GL_UNPACK_ALIGNMENT, 2);
glTexImage2D(GL_TEXTURE_2D, 0, GL_ALPHA16UI_EXT, width, height, 0,
GL_ALPHA_INTEGER_EXT , GL_UNSIGNED_SHORT, TextureStorage);

glBindTexture(GL_TEXTURE_1D, lutTexId);
glTexImage1D(GL_TEXTURE_1D, 0, 4, lutWidth, 0, GL_RGBA,
 GL UNSIGNED BYTE, Table);

#extension GL_EXT_gpu_shader4 : enable // for unsigned int support
uniform usampler2D texUnit0; // Gray Image is in tex unit 0
uniform sampler1D texUnit1; // Lookup Table Texture in tex unit 1
void main(void)
{
 vec2 TexCoord = vec2(gl_TexCoord[0]);
 //texture fetch of unsigned ints placed in alpha channel
 uvec4 GrayIndex = uvec4(texture2D(texUnit0, TexCoord));
 //low 12 bits taken only ;
 float GrayFloat = float(float(GrayIndex.a) / 4096.0);
 //fetch right grayscale value out of table
 vec4 Gray = vec4(texture1D(texUnit1, GrayFloat));
 // write data to the framebuffer
 gl_FragColor = Gray.rgba;
}

Application Layer
The 10 and 12-bit grayscale image viewing application is responsible for outputing
24-bit RGB pixels which the driver then converts to 12-bit grayscale values for
scanout as described in the previous section.

The application uses a shader that takes in the 12-bit grayscale value from the image
and translates it into a 24-bit RGB pixel using a lookup table.The lookup table is
generated to find the best RGB pixel with as little as possible differences between
the RGB values (preferred is R=G=B) for each grayscale value in the input image.
In essence, this process is the inverse of the driver conversion from RGB to
grayscale. The end result is that the grayscale image on the desktop looks like a
grayscale image on a color monitor.

The integer texture extension, EXT_texture_integer [4] in Shader Model 4 is used to
store the incoming grayscale image as a 16-bit unsigned integer without converting
to floating point representation saving memory footprint by 2×.

The lookup table mapping the grayscale image to 24-bit RGB values is stored as 1D
texture. The lookup table dimensions should exactly match the bit depth of the
grayscale values expected in incoming image so that no filtering and interpolation
operations will be performed thus preserving image precision and fidelity. Changes
to contrast, brightness and window level of the image are easily done by changing
the lookup table resulting in a 1D texture download without any change to the
sourceimage.

At run time, the applicaton draws a quad that is texture mapped with the grayscale
image. In the rasterization stage, the fragment shader is invoked for each grayvalue
which then does a dependant texture fetch into the 1D LUT texture. The complete
source is found in GrayScaleDemo.cpp.

Figure 6. Applicatio
Grayscale

on Level Te
e Display

10 an

April 1

exture Set

nd 12-Bit Grays

17, 2009 | TB-0

tup for 10

scale Technolog

04631-001_v01

and 12-Bit

gy

1 8

t

10 and 12-Bit Grayscale Technology

 April 17, 2009 | TB-04631-001_v01 9

Multi-Display Configurations

Diagnostic imaging commonly requires multiple displays for side by side modality comparisons.
Multi-display configurations are becoming more practical with systems capable of supporting
multiple graphics boards that in turn drive multiple displays. A single Quadro board can drive a
maximum of 2 displays. Depending on the available PCI slots within a system, multiple cards can be
used to drive several displays. These multiple displays can be a mix of regular color LCD panels and
specialty grayscale monitors. This section explains the issues that arise from such a heterogeneous
configuration and programming pointers to address them. The full source code for the examples is
found in the accompanying Grayscale10-bit SDK

Multi-GPU Compatibility
Grayscale capable Quadro boards can be mixed with other Quadro boards that can
drive one or many side displays as shown in Table 2. These “Side Display GPU’s”
may not yield the grayscale effect but the system will be compatible. Mixing of
GPU’s is only guaranteed to work if the GPU’s are G80 and later.

Note: The mixing of older cards (pre G80) is not supported in grayscale configurations.

Table 2. Multi-GPU Compatibility

 Grayscale GPU

Si
de

 D
is

pl
ay

 G
P

U
 Quadro FX 3800 Quadro FX 4800 Quadro FX 5800 Quadro Plex

Quadro NVS 290

Quadro FX 1800

Quadro FX 3800 X X

Quadro FX 4800 X X

 Quadro FX 5800 X X X

Note: These are theoretical compatibilities. In practice, the physical system attributes such as availability of PCI
slots and their placements will determine the final working set of cards from Table 2. The Quadro FX 5800
requires the full 2 auxiliary power inputs and therefore is only used with lower-end Quadro cards that do not
have any auxiliary power requirements.

Multiple Dis
To

1.

2.

3.

Fi

play Set
o enable multi

Open the D

Select the S

Check the E
display as sh

gure 7.

up
i-display from

Display Prope

Settings tab.

Extend my W
hown in 7.

Display P
Enabled

 the desktop f

rties.

indows deskt

Properties B

10 an

April 1

follow these si

top onto this

Before and

nd 12-Bit Grays

17, 2009 | TB-0

imple steps.

monitor chec

d After Dis

scale Technolog

04631-001_v01

ckbox for each

plays are

gy

1 10

h

10 and 12-Bit Grayscale Technology

 April 17, 2009 | TB-04631-001_v01 11

class CDisplayWin {
 HWND hWin; // handle to display window
 HDC winDC; // DC of display window
 RECT rect; // rectangle limits of display
 bool primary; //Is this the primary display
 char displayName[128]; //name of this display
 char gpuName[128]; //name of associated GPU
 bool grayScale; //Is this a grayscale display
public:
 bool spans(RECT r);//If incoming rect r spans this display

}
#define MAX_NUM_GPUS 4
int displayCount = 0; //number of active displays
//list of displays, each gpu can attach to max 2 displays
CDisplayWin displayWinList[MAX_NUM_GPUS*2];

DISPLAY_DEVICE dispDevice;
DWORD displayCount = 0;
memset((void *)&dispDevice, 0, sizeof(DISPLAY_DEVICE));
dispDevice.cb = sizeof(DISPLAY_DEVICE);
// loop through the displays and print out state
while (EnumDisplayDevices(NULL,displayCount,&dispDevice,0)) {
if (dispDevice.StateFlags & DISPLAY_DEVICE_ATTACHED_TO_DESKTOP) {
 printf("DeviceName = %s\n", dispDevice.DeviceName);
 printf("DeviceString = %s\n",dispDevice.DeviceString);
 if (dispDevice.StateFlags &DISPLAY_DEVICE_PRIMARY_DEVICE)
 printf("\tPRIMARY DISPLAY\n");
 DEVMODE devMode;
 memset((void *)&devMode, 0, sizeof(devMode));
 devMode.dmSize = sizeof(devMode);
 EnumDisplaySettings(dispDevice.DeviceName, ENUM_CURRENT_SETTINGS,
 &devMode);
 printf("\tPosition/Size = (%d, %d), %dx%d\n",
 devMode.dmPosition.x, devMode.dmPosition.y,devMode.dmPelsWidth,
 devMode.dmPelsHeight);
 HWND hWin =
 createWindow(GetModuleHandle(NULL),devMode.dmPosition.x+50,
 devMode.dmPosition.y+50, devMode.dmPelsWidth-50,
 devMode.dmPelsHeight-50);
 if (hWin) { //got a window
 HDC winDC = GetDC(hWin);
 // TODO - set pixel format, create OpenGL context
 }
 else
 printf("Error creating window \n");
 }//if attached to desktop
 displayCount++;
} //while(enumdisplay);

For an application using multiple GPU’s and displays it is often useful to
programmatically find out their attributes and capabilities. This section and the
following ones show code samples to demonstrate that in progressive detail.
Following are some data structures used throughout the document examples. The
CDisplayWin structure defined in CDisplayWin.[h|cpp]encapsulates the
attributes of each display and the displayWinList is a container for all displays.
Accessor functions have been omitted to aid readability.

Following is a simple example using the Windows GDI to enumerate the attached
displays, gets their extents and also check if the display is set as primary. The
following code can be easily modified to include unattached displays.

10 and 12-Bit Grayscale Technology

 April 17, 2009 | TB-04631-001_v01 12

DeviceName = \\.\DISPLAY1
DeviceString = NVIDIA Quadro FX 1800
PRIMARY DISPLAY
Position/Size = (0, 0), 1280x1024

DeviceName = \\.\DISPLAY2
DeviceString = NVIDIA Quadro FX 4800
Position/Size = (1280, 0), 2560x2048

DeviceName = \\.\DISPLAY3
DeviceString = NVIDIA Quadro FX 4800
Position/Size = (3840, 0), 1600x1200

Running this enumeration code on our 3 display example (shown in Figure 7) prints
out the following.

Note: The enumeration shown in this section abstracts special hardware capabilities of
the displays such as grayscale or color capability. For such physical display details,
we need access to the Extended display identification data (EDID)-the data
structure provided by the computer display to the graphics card. This is described
in the next section.

Mixing Grayscale and Color Displays
The previous section demonstrated how to get the general characteristics of a
display such as extent etc, but more specific properties of monitors will decide how
to layout our application. For example, user interface and launching elements are
normally placed on the regular color LCD’s while the radiological images will be
rendered to the grayscale displays. A display is defined to be grayscale compatible if
both the monitor and the GPU attached are grayscale enabled. To determine if a
monitor is grayscale we parse its EDID to get the model name and compare it with
the list of enabled monitors. This EDID is provided by the NVIDIA NVAPI [5] –
an SDK that gives low level direct access to NVIDIA GPUs and drivers on all
windows platforms. The following example shows enumerating the attached
displays and its associated panel and GPU string. Refer to the complete source in
CheckGrayscale.cpp for error checking functions and the isGrayscaleGPU and
isGrayscaleMonitor string parsing functions.

// Declare array of displays and associated grayscale flag
NvDisplayHandle hDisplay[NVAPI_MAX_DISPLAYS] = {0};
NvU32 displayCount = 0;
// Enumerate all the display handles
for(int i=0,nvapiStatus=NVAPI_OK; nvapiStatus == NVAPI_OK; i++) {

nvapiStatus = NvAPI_EnumNvidiaDisplayHandle(i, &hDisplay[i]);
if (nvapiStatus == NVAPI_OK) displayCount++;

}
printf("No of displays = %u\n",displayCount);

//Loop through each display to check if its grayscale compatible
for(unsigned int i=0; i<displayCount; i++) {

//Get the GPU that drives this display
NvPhysicalGpuHandle hGPU[NVAPI_MAX_PHYSICAL_GPUS] = {0};
NvU32 gpuCount = 0;
nvapiStatus =
NvAPI_GetPhysicalGPUsFromDisplay(hDisplay[i],hGPU,&gpuCount);
nvapiCheckError(nvapiStatus);

10 and 12-Bit Grayscale Technology

 April 17, 2009 | TB-04631-001_v01 13

//Get the GPU's name as a string
NvAPI_ShortString gpuName;
NvAPI_GPU_GetFullName (hGPU[0], gpuName);
printf("Display %d, GPU %s",i,gpuName);
nvapiCheckError(nvapiStatus);

//Get the display ID for subsequent EDID call
NvU32 id;
nvapiStatus = NvAPI_GetAssociatedDisplayOutputId(hDisplay[i],&id);
nvapiCheckError(nvapiStatus);

//Get the EDID for this display
NV_EDID curDisplayEdid = {0};
curDisplayEdid.version = NV_EDID_VER;
nvapiStatus = NvAPI_GPU_GetEDID(hGPU[0],id,&curDisplayEdid);
nvapiCheckError(nvapiStatus);

//Check if the GPU & monitor both support grayscale
//and set the grayFlags table
if (isGrayscaleGPU(gpuName)&& \\
 isGrayscaleMonitor(curDisplayEdid.EDID_Data,NV_EDID_DATA_SIZE))
 displayWinList[i].grayScale = true;
else
 displayWinList[i].grayScale = false;

}

Moving and Spanning Windows Across Displays
Many applications allow users to freely move windows across multiple displays. It
may be desirable for some applications to prevent spanning a grayscale image
window to a color display. In the event-handling code for a window move and
resize, we query all the displays that the current window spans to check for grayscale
compatibility. The following code snippet refers to the data structures populated in
the previous examples to do the runtime query.

LONG WINAPI winProc(HWND hWin, UINT uMsg, WPARAM wParam, LPARAM lParam)
{
 switch (uMsg) {
 case WM_SIZE:
 RECT rect;
 GetClientRect(hWin, &rect);
 for (int i=0;i<displayCount;i++) {
 //check if the window spans this display
 if (displayWinList [i].spans(rect)) {
 //Now check this is grayscale compatible display
 if (!displayWinList[i].grayScale) {
 //do something eg prevent spanning
 }
 }
 } //end of for
 break;
 case WM_MOVE:
 RECT rect;
 //Repeat as above for WM_SIZE

 }
}

Targgeting S
Th
wo
ha
the
mo
ref
at
ren
Qu

Th
GP
co
aff
DC
co
cu

Fi

pecific G
he default beh
orks for many
andling more c
e GPUs that a
oves to a disp
fresh or drawi
all, minimizin
ndering, we us
uadro profess

he GPU Affin
PUs responsib

oncept of an af
finity mask. W
C’s affinity ma

ontext is associ
urrent will be s

gure 8.

GPUs for
havior is for O
y applications,
complicated. T
are capable of
lay connected
ing happens. I

ng user interac
se the WGL N
ional cards.

nity for a wind
ble for the win
ffinity DC wh

When an Open
ask that is imm
iated with a w
sent to the GP

Using Aff
for OpenG

Renderin
OpenGL comm

it makes runt
Therefore, it is
f grayscale out
d to a GPU wh
In fact, some a
ction to increa
NV Affinity ex

dow is defined
ndow drawing
hich is simply a
nGL context is
mutable. For o

window DC, an
PUs specified

finity Exten
GL Render

10 an

April 1

ng
mands to be se
time graphics
s desirable to
tput. In this ca
here grayscale
applications p

ase efficiency.
xtension [6] av

d by an affinity
g. This extensi
a device conte
s created from
on-screen draw
ny OpenGL c
in the affinity

nsion to Ta
ring

nd 12-Bit Grays

17, 2009 | TB-0

ent to all GPU
capability che
limit grayscale

ase, when the
 is not enabled

prevent windo
To target spec
vailable for W

y mask that co
ion also introd
ext embedded

m this DC it in
wing, when th
calls made with
y mask.

arget Spec

scale Technolog

04631-001_v01

Us. While this
ecking and
e rendering to
window
d, no screen
w movements
cific GPUs fo

Windows on

ontains a list o
duces the
d with the
nherits the
his affinity
h this context

ific GPUs

gy

1 14

o

s
or

f

t

10 and 12-Bit Grayscale Technology

 April 17, 2009 | TB-04631-001_v01 15

class CAffGPU {
HDC affinityDC; // Device Context of affinity gpu
HGLRC affinityGLRC; // OpenGL Resource Context

public:
init(HGPUNV* pGPU, int num); //List of GPU handles in the mask
~ CAffGPU();

} ;
unsigned int gpuCount = 0;
CAffGPU affGPUList[MAX_NUM_GPUS]

//Get affinity DC and RC for this GPU.
//In the case below one GPU is associated with
void CAffinityGPU::init(HGPUNV* hGpu, int num) {
 // Assume just 1 GPU in the list for simplicity
 HGPUNV gpuMask[2];
 gpuMask[0] = *hGpu;
 gpuMask[1] = NULL;
 //Create affinity-DC
 if (!(affinityDC = wglCreateAffinityDCNV(gpuMask)))
 ERR_MSG("Unable to create GPU affinity DC");
 //Set the pixel format for the affinity-DC
 setPixelFormat(affinityDC);
 //Create affinity-context from affinity-DC
 if (!(affinityGLRC = wglCreateContext(gpuDC)))
 ERR_MSG("Unable to create GPU affinity RC");
}

class CDisplayWin {
...

 CAffGPU* pAffinityGPU; //The list of GPU’s responsible for rendering
this window

...
} ;

We introduce another class, CAffGPU to encapsulate all the attributes for an Affinity
GPU and the affGPUList which is a collection of CAffGPU’s.

To encapsulate the displays attached to affinity GPUs, the class CAffDisplayWin is
extended from the existing CDisplayWin class to include a pointer to the
CAffinityGPU instance that is responsible for its rendering.

The following CAffinityGPU::init initialization function shows the affinity DC
and OpenGL resource context are created for an affinity GPU instance with just
one physical GPU specified in the mask. Of course, multiple physical GPUs can be
associated with one affinity GPU using this affinity mask for more complex
rendering topologies.

10 and 12-Bit Grayscale Technology

 April 17, 2009 | TB-04631-001_v01 16

HGPUNV curNVGPU;
//Get a list of GPU's
while ((gpuCount < MAX_NUM_GPUS) && wglEnumGpusNV(gpuCount, &curNVGPU)) {
 unsigned int curDisplay = 0; //displays per current GPU
 GPU_DEVICE gpuDevice;
 gpuDevice.cb = sizeof(gpuDevice);
 affGPUList[gpuCount].init(&curNVGPU,1);
 //loop through displays devices for this GPU
 while (wglEnumGpuDevicesNV(curNVGPU, curDisplay, &gpuDevice)) {
 displayWinList[displayCount].setGPUName(gpuDevice.DeviceString);

 displayWinList[displayCount].setDisplayName(gpuDevice.DeviceName)
 displayWinList[displayCount].setRect(gpuDevice.rect);
 if ((gpuDevice.Flags & DISPLAY_DEVICE_PRIMARY_DEVICE))

 displayWinList[displayCount].primary = true;
 curDisplay++;

 displayCount++;
} //end of enumerating displays

 gpuCount++;
} //end of enumerating gpu's

case WM_PAINT:
 //Use the affinity context for this window
 wglMakeCurrent(winDC, pAffinityGPU->affinityGLRC;
 glGetString(GL_RENDERER);
 //Drawing code goes here
 SwapBuffers(winDC);
 break;

CAffinityGPU::~CAffinityGPU() {
 if (gpuRC)
 wglDeleteContext(gpuRC);
 if (gpuDC)
 wglDeleteDCNV(gpuDC);
}

Handles for all the system GPUs are enumerated by the following wglEnumGpusNV
call. This example also shows another way of enumerating the display devices using
the wglEnumGpuDevicesNV and GPU_DEVICE structure that resemble closely the
windows GDI enumDisplayDevices and DISPLAY_DEVICE introduced earlier.

At run time, the GPU resource context must be made current to the window DC
before any OpenGL calls are made. This way, rendering only happens to the
subrectangles of the windows that overlaps parts of the desktops that are displayed
by the GPUs in the affinity mask of the resource context.

At application shutdown, the Affinity DC must be deleted

Note: When the affinity GL context is used, it is not recommended to create another
OpenGL context from the Windows DC. Doing so may lead to unexpected
behavior when querying OpenGL attributes using glGetString

Typ

Cas

pical Mu

W
an

se 1. 2 5
Th
GP
en
FX

Fi

Ta

T
R

S
(

G
D

ulti-Disp

We examine the
nd color panels

MP Gray
he most comm
PU drives 2 5

nd Quadro NV
X card.

gure 9.

able 3.

Total
Resolution

Side Display
Primary)

Grayscale
Display

play Con

e commonly u
s and their un

yscale Di
monly used co

MP grayscale
VS card (if the

10 MP Gr

Character

10 MP

Quadro NVS

Quadro FX
Quadro FX

Quadro FX

Grayscale G
(Table 2

nfigurati

used multi-disp
nderlying GPU

isplays D
onfiguration fo
e displays. One
ere are no PCI

rayscale Di

ristics for 1

P 5120 x

S 290 1 PCI
slots

1800
3800

1 PCI
16x slo

4800 2 PCI

GPUs
2)

2 PCI

10 an

April 1

ions

play setups tha
U configuration

Driven by
or diagnostic im
e or two side
I 16× slots ava

isplay Conf

10 MP Setu

x 2048 (landsca

1x slot; good f

16x; recommen
ots

16x; high-end

16x slot

nd 12-Bit Grays

17, 2009 | TB-0

at mix graysca
n.

y 1 GPU
maging, a high
displays are dr
ailable) or ano

figuration

up

ape) or 4096 x

for system with

nded for system

systems with 4

scale Technolog

04631-001_v01

ale monitors

h-end Quadro
riven by a low

other Quadro

 2560 (portrait

h only 2 PCI x16

ms with 3 PCI

4 PCI 16x slots

gy

1 17

o
w-

t)

6

Casse 2. 4 5
Tw
ass
dri

Fi

Ta

T

S
(

G
G

G
G

MP Gray
wo high-end Q
sumes that the
iven by a low-

gure 10.

able 4.

Total Resolution

Side Display GP
Primary Display

Grayscale Displa
GPU 1

Grayscale Displa
GPU 2

yscale Di
Quadro GPUs
e system has a
-end Quadro N

3 GPUs D

Character

n

PU
y)

Quad

ay Gray
(T

ay Gray
(T

isplays D
s drive 4 5 MP
at least 4 PCI
NVS card.

Driving a 20

ristics for t

20 MP

dro NVS 290

yscale GPUs
Table 2)

yscale GPU’
Table 2)

10 an

April 1

Driven by
P grayscale dis
16x slots. On

0 MP Gray

the 20 MP

10, 240 x
8192 x 25

1 PCIE x1

2 PCIE x16

2 PCIE x16

nd 12-Bit Grays

17, 2009 | TB-0

y 2 GPUs
splays. This co
e or two side

yscale Disp

Setup

2048 (landscap
60 (portrait)

slot

6 slot

6 slot

scale Technolog

04631-001_v01

s
onfiguration
displays are

play

pe) or

gy

1 18

10 and 12-Bit Grayscale Technology

 April 17, 2009 | TB-04631-001_v01 19

References

[1] Digital Imaging and Communications in Medicine (DICOM)- Part 14 grayscale
standard display function. http://medical.nema.org

[2] NDS Dome E5 Display
http://www.ndssi.com/products/dome/ex-grayscale/e5.html

[3] Eizo Radiforce GS520 Display
http://www.radiforce.com/en/products/mono-gs520-dm.html

[4] Integer Texture Extension
http://www.opengl.org/registry/specs/EXT/texture_integer.txt

[5] NVIDIA NVAPI – www.nvapi.com

[6] GPU Affinity Specification
http://developer.download.nvidia.com/opengl/specs/WGL_nv_gpu_affinity.t
xt

[7] Ian Williams, HD is now 8MP &HDR, Slides from NVISION 2008.
http://www.nvidia.com/content/nvision2008/tech_presentations/Professional
_Visualization/NVISION08-8MP_HDR.pdf

10 and 12-Bit Grayscale Technology

 April 17, 2009 | TB-04631-001_v01 20

Implementation Details

The following source code is divided into 3 separate projects. The intent is for these
components to be mixed and matched according to the user application
requirements.

 GrayscaleDemo.sln

 GrayscaleDemo.[cpp|h] – An example demo application that does the
various texture setups and allows the user to choose a grayscale image for
display.

 CheckGrayscale.sln

 CDisplayWin.[cpp|h] – Class CDisplayWin that encapsulates all attributes
of an attached display such name, extents, driving GPU, etc.

 CheckGrayscale.cpp – Main program that enumerates all attached GPUs
and displays using Win GDI API and uses NVIDIA NVAPI to check the
displays that are grayscale compatible.

 MultiGPUAffinity.sln

 CAffGPU.[cpp|h] – Class CAffGPU that encapsulates an affinity GPU
with its attributes such as the DC, OpenGL context, etc.

 CAffDisplayWin.[cpp|h] – Class CAffDisplayWin that extends
CDisplayWin to include affinity specific information.

 MultiGPUAffinity.cpp – Main program that enumerate all GPUs creates
the affinity data structures and does the event handling.

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under
any patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Macrovision Compliance Statement

NVIDIA Products that are Macrovision enabled can only be sold or distributed to buyers with a valid and
existing authorization from Macrovision to purchase and incorporate the device into buyer’s products.

Macrovision copy protection technology is protected by U.S. patent numbers 5,583,936; 6,516,132;
6,836,549; and 7,050,698 and other intellectual property rights. The use of Macrovision’s copy protection
technology in the device must be authorized by Macrovision and is intended for home and other limited pay-
per-view uses only, unless otherwise authorized in writing by Macrovision. Reverse engineering or
disassembly is prohibited

Trademarks

NVIDIA, the NVIDIA logo, CUDA and Quadro are trademarks or registered trademarks of NVIDIA Corporation
in the United States and other countries. Other company and product names may be trademarks of the
respective companies with which they are associated.

Copyright

© 2009 NVIDIA Corporation. All rights reserved.

