NVIDIA.

Technical Brief

10 and 12-bit Grayscale
Technology for NVIDIA®
Quadro®

April 2009| TB-04631-001_v01

Document Change History

Version

Date

Responsible

Description of Change

01

April 17, 2009

SV, SM

Initial Release

April 17, 2009 | TB-04631-001_v01

Table of Contents

10 and 12-bit Grayscale TEChNOIOQYc.uiiiiiiii e 1
T oo ¥ Tox 1o o I TP 1
System Specific INFOrMAatioNo.iiiiiii e 3

SuppOrted GraphiCs BOAITSccuu ittt et e e e et e e e eanas 3
YU o] oo C=To 1Y o o) (o] S 4
101 o] oZ0] g C=To I 60 g T=Tox o] =00 4
Grayscale MONITOr SEtHINGS. ... cu ittt et e e e e et e e e e eaaees 5
Grayscale IMplementationc.. i e et 6
DT Y= I Y= 6
F o] o] [To= 1 o] o 1= V7= P PTPPTPRN 7
Multi-Display CONFIGUIALIONSiiieiii ettt e e e e e e e e 9
MUIti-GPU ComMPAtibilityeeneeeiee e e e e e e e e e e e e e e e e aneeen 9
Y UL o] ST Y o] F= Y= (0 o I 10
Mixing Grayscale and Color DISPIAYSoeu e e e 12
Moving and Spanning WIindows ACross DiSPlayS.........ueeuviuieeieeneiieeiie e e e e e 13
Targeting Specific GPUS fOr RENAEINGvvuiiiiiii e e e e e e 14
Typical Multi-Display ConfiQUIationsc..iiuiiiie e 17
Case 1. 2 5 MP Grayscale Displays Driven by 1 GPUcccuiiiiiiiiiiiiiiiieeeieeeeeei e 17
Case 2. 4 5 MP Grayscale Displays Driven by 2 GPUScouvviiiiiiiiieeeee e 18
RS (] (T o= TP 19
IMplementation DetailS e 20

April 17, 2009 | TB-04631-001_vO1 |iii

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.

Table 1.
Table 2.
Table 3.
Table 4.

List of Figures

10 MPixel, 10-Bit Diagnostic Mammography Displaycccooveiiiiiiiiiiiiiieiiineeennne. 2
Application Enhanced Using Multiple DiSplaysS..........vveieeiiiiiineiieei e 2
DisplayPort to DVI Bizlink DONGIE.......ciuiiiiiii e 4
Enable Grayscale Monitor to Display Higher Resolutionccooiveiiiiiiniiineeennnn. 5
Driver Converts and Packs Desktop from 24-Bit Color to 12-Bit Grayc.ceeennes 6
Application Level Texture Setup for 10 and 12-Bit Grayscale Display 8
Display Properties Before and After Displays are Enabled..........c...coooiiiiiiiiiiin. 10
Using Affinity Extension to Target Specific GPUs for OpenGL Rendering 14
10 MP Grayscale Display Configurationcc.oevuiiuieiiieiieei e 17
3 GPUs Driving a 20 MP Grayscale DiSplayceuoiiuiiiiiiiiiiiiiiiieeieeeee e 18

List of Tables

Graphics Boards with 10 and 12-Bit Grayscale SUPPOItoceevvieiiiiiiiiiiiieeeenes 3
MUlti-GPU CompPatibility......ccuueeeieeiie i e e e e e een 9
Characteristics for 10 MP SETUD . .euiiniiieii e e e e e e e eaas 17
Characteristics for the 20 MP SETUD.. ... ittt 18

April 17, 2009 | TB-04631-001_v01

iv

10 and 12-bit
Grayscale Technology

Introduction

Advances in sensor technology and image acquisition techniques in the field of
radiology are producing high bit depth grayscale images in the range of 12 to 16-bit
per pixel. At the same time, the adoption of displays with native support for 10 and
12-bit grayscale is growing. These affordable displays are DICOM[1] conformant to
preserve image quality and consistency. Furthermore, tiling together multiple such
displays enables side-by-side digital study comparisons driven by a single system.

Standard graphics workstations however are limited to 8-bit grayscale, which
provides only 256 possible shades of gray for each pixel sometimes obscuring subtle
contrasts in high density images. Radiologists often use window-leveling techniques
to identify the region of interest that can quickly become a cumbersome and time-
consuming user interaction process.

NVIDIA’s 10-bit and 12-bit grayscale technology allows these high quality displays
to be driven by standard NVIDIA® Quadro® graphics boards preserving the full
grayscale range. By using “pixel packing” the 10-bit or 12-bit grayscale data is
transmitted from the Quadro® graphics board to a high grayscale density display
using a standard DVI cable. Instead of the standard three 8-bit color components
per pixel, the pixel packing allows two 10 or 12-bit pixels to be transmitted,
providing higher spatial resolution and grayscale pixel depth as compared to an 8-bit
system.

As specialty hardware is not required, NVIDIA’s 10-bit grayscale technology is
readily available for use with other radiology functions and easy to support amongst
a wide range of grayscale panels from various manufacturers. In a preliminary study
performed on 10 radiologists using Dome E5 10-bit vs. E5 8-bit displays in
conjunction with Three Palms 10-bit, OpenGL accelerated WorkstationOne
mammography application, radiologists’ performance was statistically significant on
the 10-bit enabled display systems, some experiencing triple the read time speedup.

This technical brief describes the NVIDIA grayscale technology, the system
requirements and setup. It also aims to guide users through common pitfalls that
arise when extending to multi-display and multi graphics processing unit (GPU)
environments routinely used in diagnostic imaging and recommends best practices.

Figure 1 shows the latest technology in digital diagnostic display systems, a Quadro
card driving a 10 mega-pixel, 10-bit grayscale display. Figure 2 shows a 10-bit
enabled mammography application displaying multiple modalities on multiple
displays.

April 17, 2009 | TB-04631-001_vO1

10 and 12-Bit Grayscale Technology

Figure 1. 10 MPixel, 10-Bit Diagnostic Mammography
Display®

- . a e

ge O

04

ey TRETARE L

- N0 e e B
CLEYYYY] — 4:':

Figure 2. Application Enhanced Using Multiple Displays?

! Image courtesy of NDS Surgical Imaging, DOME Z10.

2 Image courtesy of Threepalms, Inc.

April 17, 2009 | TB-04631-001_vO1 |2

10 and 12-Bit Grayscale Technology

System Specific Information

O 10 and 12-bit grayscale currently requires Windows XP.

O Windows Vista support for 10-bit grayscale over DVI is being worked on.

O Grayscale is only supported for OpenGL based applications.

Supported Graphics Boards

10-bit grayscale is supported on Quadro FX graphics boards shown in Table 1. The
graphics boards are G80 and higher. The graphics boards are NVIDIA CUDA™

enabled.

Table 1. Graphics Boards with 10 and 12-Bit Grayscale

Support

Quadro FX 3800

Mid-range card with 1 GB of graphics memory.
Recommended if the primary usage is to display 2D
grayscale images and some 3D data.

Quadro FX 4800

O

High-end card with 1.5 GB of graphics memory and 2
DisplayPort outputs. Recommended for applications that
also require rendering large 3D.

Quadro FX 5800

@

Ultra-high end card with 4 GB of graphics memory.
Recommended for applications that also deal with large
datasets such as 4D geometries and volumes.

Quadro Plex 2200 D2

Dedicated deskside visual computing system composed of
2 Quadro FX 5800 graphics boards with a total of 8 GB of
graphics memory. Recommended for advanced
visualization and large scale projection and display use
cases.

April 17, 2009 | TB-04631-001_v01

10 and 12-Bit Grayscale Technology

Supported Monitors

The monitor should be capable of 10 and 12-bit outputs. We currently support the
following displays.
O NDS Surgical Imaging Dome E5 5MP and Z10 10MP display’s [2]

O Eizo Radiforce GS520 5MP display[3] — currently in beta, to be released in
the R190 driver.

Supported Connectors

O Single or Dual-link DVI

Although single-link DVI is only capable of transmitting up to HD (1920 X
1200), our grayscale pixel packing mechanism allows 5 MP (2560 X 2048)
images to be sent over single-link DVI.

O DisplayPort
This applies to the Quadro FX 4800 and the Quadro FX 5800 that have
DisplayPort outputs. As grayscale monitors currently only support DVI, a
DisplayPort-to-single and dual DVI adaptors is needed at the GPU end. The
Bizlink dongle (P/N 030-0223-0000) shown in Figure 3 has been tested and is
recommended.

S

Figure 3. DisplayPort to DVI Bizlink Dongle

April 17, 2009 | TB-04631-001_v01 |4

10 and 12-Bit Grayscale Technology

Grayscale Monitor Settings

When a grayscale compatible monitor is connected to a suitable NVIDIA board, the
NVIDIA driver automatically detects it and immediately switches to packed pixel
mode. Therefore, there are no control panel settings to enable and disable 10-bit
grayscale. The only setting required is to enable the grayscale monitor to display at a
maximum resolution of 2560 X 2048. Follow these simple steps.

Open the Display Properties.
Select the Settings tab.
Click on Advanced.

1
2
3
4. Select the Monitor tab.
5. Uncheck the Hide modes that this monitor cannot display check box.
6

Click Apply. The maximum resolution is now set to 2560 X 2048.

ooy Properies S 20
Themes | Desktop | Screen Saver | Appearance Settings |
Color Management | & Quadro FX 5800 |
Geneial | Adapter Monitor | Troubleshoot |
Monitor type
Display:
Plug and Play Moritr on NVIDIA Quadro FX 5800 gl Plug and Play Moriitor
I §cmwwhﬁonr o Color quality . Pioperies
L] | More | | [Highest (32bi) -
" ' '’ '®= [~ Monitor settings
; Screen refiesh rate:
Troubleshoot... Adyanced
60 Hertz :_I
K| Ccod Tl
I~ Hide nodes that this monitol cannot displagl
uncheck ~~Eloairg this check box alows you to select display modes that this
monitor cannot display comrectly. This may lead to an unusable display
20 and/ordameged hadwere:
Themes | Deskiop | Screen Saver| Appearance Seitings | /
A
oK Cancel Apply

Display:
Phug and Play Monior on NVIDIA/Quadro FX 5800

Screen resolution 1~ Color quality 1
Less i More [Highest (32 bi =l

| [FT T T
Troubleshoot... Adyanced I
Ok | Cancel | Apoly]

Figure 4. Enable Grayscale Monitor to Display Higher
Resolution

April 17, 2009 | TB-04631-001_v01 |5

10 and 12-Bit Grayscale Technology

Grayscale Implementation

Driver Layer

On grayscale enabled Quadro boards, the driver implements a pixel packing
mechanism that is transparent to the desktop and to the application. The 24-bit
RGB desktop is first converted to 12-bit grayscale using the NTSC color conversion
formula and then two 12-bit gray values are packed into 1 RGB DVI pixel and
finally shipped to the monitor. This pixel packing allows displaying of 5 MP gray
values just using a single-link DVI (that is normally limited to HD resolution).

24-hit 24-hit

Gray = 0.3 R+0.59 G+0.11 B

Figure 5. Driver Converts and Packs Desktop from 24-Bit
Color to 12-Bit Gray

April 17, 2009 | TB-04631-001_vO1

10 and 12-Bit Grayscale Technology

Application Layer

The 10 and 12-bit grayscale image viewing application is responsible for outputing
24-bit RGB pixels which the driver then converts to 12-bit grayscale values for
scanout as described in the previous section.

The application uses a shader that takes in the 12-bit grayscale value from the image
and translates it into a 24-bit RGB pixel using a lookup table. The lookup table is
generated to find the best RGB pixel with as little as possible differences between
the RGB values (preferred is R=G=B) for each grayscale value in the input image.
In essence, this process is the inverse of the driver conversion from RGB to
grayscale. The end result is that the grayscale image on the desktop looks like a
grayscale image on a color monitor.

The integer texture extension, EXT_texture_integer [4] in Shader Model 4 is used to
store the incoming grayscale image as a 16-bit unsigned integer without converting
to floating point representation saving memory footprint by 2X.

glPixelStorei (GL_UNPACK_ALIGNMENT, 2);
glTexImage2D(GL_TEXTURE_2D, 0, GL_ALPHA16UlI_EXT, width, height, O,
GL_ALPHA_INTEGER_EXT , GL_UNSIGNED_SHORT, TextureStorage);

The lookup table mapping the grayscale image to 24-bit RGB values is stored as 1D
texture. The lookup table dimensions should exactly match the bit depth of the
grayscale values expected in incoming image so that no filtering and interpolation
operations will be performed thus preserving image precision and fidelity. Changes
to contrast, brightness and window level of the image are easily done by changing
the lookup table resulting in a 1D texture download without any change to the
sourceimage.

glBindTexture(GL_TEXTURE_1D, lutTexld);
glTexImagelD(GL_TEXTURE_1D, 0, 4, lutWidth, O, GL_RGBA,
GL UNSIGNED BYTE, Table);

At run time, the applicaton draws a quad that is texture mapped with the grayscale

image. In the rasterization stage, the fragment shader is invoked for each grayvalue
which then does a dependant texture fetch into the 1D LUT texture. The complete
source is found in GrayScaleDemo . cpp.

#extension GL_EXT gpu_shader4 : enable // for unsigned int support
uniform usampler2D texUnitO; // Gray Image is in tex unit O
uniform samplerlD texUnitl; // Lookup Table Texture in tex unit 1
void main(void)

vec2 TexCoord = vec2(gl_TexCoord[0]);

//texture fetch of unsigned ints placed in alpha channel
uvec4 Graylndex = uvec4(texture2D(texUnit0O, TexCoord));
//low 12 bits taken only ;

float GrayFloat = float(float(Graylndex.a) /7 4096.0);
//fetch right grayscale value out of table

vecd Gray = vec4(texturelD(texUnitl, GrayFloat));
// write data to the framebuffer

gl_FragColor = Gray.rgba;

April 17, 2009 | TB-04631-001_v01

10 and 12-Bit Grayscale Technology

Grayscale Image
(2D Texture of 16-bit unsigned ints)

Lookup Table
1D RGBA Texture

24-bit RGB Desktop

Br] | bt | e | [n e et ptint | = 5 S

Driver pixel packing

Grayscale Monitor

Figure 6. Application Level Texture Setup for 10 and 12-Bit
Grayscale Display

April 17, 2009 | TB-04631-001_vO1 |8

Multi-Display Configurations

Diagnostic imaging commonly requires multiple displays for side by side modality compatisons.

10 and 12-Bit Grayscale Technology

Multi-display configurations are becoming more practical with systems capable of supporting

multiple graphics boards that in turn drive multiple displays. A single Quadro board can drive a

maximum of 2 displays. Depending on the available PCI slots within a system, multiple cards can be
used to drive several displays. These multiple displays can be a mix of regular color LCD panels and

specialty grayscale monitors. This section explains the issues that arise from such a heterogeneous

configuration and programming pointers to address them. The full source code for the examples is

found in the accompanying Grayscale10-bit SDK

Multi-GPU Compatibility

Grayscale capable Quadro boards can be mixed with other Quadro boards that can
drive one or many side displays as shown in Table 2. These “Side Display GPU’s”

may not yield the grayscale effect but the system will be compatible. Mixing of

GPU’s is only guaranteed to work if the GPU’s are G80 and later.

Note: The mixing of older cards (pre G80) is not supported in grayscale configurations.

Table 2.

Multi-GPU Compatibility

Grayscale GPU

Side Display GPU

Quadro FX 3800 Quadro FX 4800 Quadro FX 5800 Quadro Plex
QuadroNvVs 290 | ¥ v v v
Quadro FX 1800 v v v v
Quadro FX 3800 | ¥ v X X
Quadro FX 4800 v v X X
Quadro FX 5800 X X X v

Note: These are theoretical compatibilities. In practice,
slots and their placements will determine the final working set of cards from Table 2. The Quadro FX 5800
requires the full 2 auxiliary power inputs and therefore is only used with lower-end Quadro cards that do not

have any auxiliary power requirements.

the physical system attributes such as availability of PCI

April 17, 2009 | TB-04631-001_v01 |9

10 and 12-Bit Grayscale Technology

Multiple Display Setup

To enable multi-display from the desktop follow these simple steps.
1. Open the Display Properties.
2. Select the Settings tab.

3. Check the Extend my Windows desktop onto this monitor checkbox for each
display as shown in 7.

2%
Themes | Deskiop | Screen Saver | Appearance Setings |
Drag the monitor icons to match the physical anangement of your monitors.

[1] 3

Iz Phug and Play Monitor on NVIDIA Quadro FX 4600 =l
[~ Screen resolution 1 [Colorqualty
Less [Highest 32 2) |
2560 by 2048 pooeks T e Tm
Hés device as the pamany morpor

i Wdowsceskicp o s merker. Miert= Check to enable display

[dertly | Iroubleshoot. | Adyanced |

ok] _coma | oo |

)Kw

Dovtor properties TP
ﬂlnul Dadtlw| SuunSavul Appesiance Settings I
Drag the monitor icons to match the physical anangement of your morstors.

Ia Phug and Play Monor on NVIDLA Quadro FX 4600 =

Less

[Highet (32 b2) |
0 0h
1600 by 1200 posels ' = 'm
™ Use this device as the primary monitor,
% Extend my Windows desktop ceio this mondor.

Identty | Troubleshoot.. | Advanced |

[k] coce | sy |

F""‘“"“*""‘ v

=

Figure 7. Display Properties Before and After Displays are
Enabled

April 17, 2009 | TB-04631-001_vO01 |10

10 and 12-Bit Grayscale Technology

For an application using multiple GPU’s and displays it is often useful to
programmatically find out their attributes and capabilities. This section and the
following ones show code samples to demonstrate that in progressive detail.
Following are some data structures used throughout the document examples. The
CDisplayWin structure defined in CDisplayWin. [h]cpp]encapsulates the
attributes of each display and the displayWinList is a container for all displays.
Accessor functions have been omitted to aid readability.

class CDisplayWin {

HWND hWin; // handle to display window
HDC winDC; // DC of display window
RECT rect; // rectangle limits of display
bool primary; //1s this the primary display
char displayName[128]; //name of this display
char gpuName[128]; //name of associated GPU
bool grayScale; //Is this a grayscale display
public:
bool spans(RECT r);//1f incoming rect r spans this display

3

#define MAX_NUM_GPUS 4

int displayCount = 0; //number of active displays

//1ist of displays, each gpu can attach to max 2 displays
CDisplayWin displayWinList[MAX_NUM_GPUS*2];

Following is a simple example using the Windows GDI to enumerate the attached
displays, gets their extents and also check if the display is set as primary. The
following code can be easily modified to include unattached displays.

DISPLAY_DEVICE dispDevice;
DWORD displayCount = 0;
memset((void *)&dispDevice, 0, sizeof(DISPLAY_DEVICE));
dispDevice.cb = sizeof(DISPLAY_DEVICE);
// loop through the displays and print out state
while (EnumDisplayDevices(NULL,displayCount,&dispDevice,0)) {
iT (dispDevice.StateFlags & DISPLAY_DEVICE_ATTACHED_TO_DESKTOP) {
printf(*'DeviceName = %s\n", dispDevice.DeviceName);
printf("'DeviceString = %s\n",dispDevice.DeviceString);
if (dispDevice.StateFlags &DISPLAY_DEVICE_PRIMARY_DEVICE)
printf("\tPRIMARY DISPLAY\n");
DEVMODE devMode;
memset((void *)&devMode, 0, sizeof(devMode));
devMode.dmSize = sizeof(devMode);
EnumDisplaySettings(dispDevice.DeviceName, ENUM_CURRENT_SETTINGS,

&devMode) ;
printf('"\tPosition/Size = (%d, %d), %dx%d\n",
devMode.dmPosition.x, devMode.dmPosition.y,devMode .dmPelsWidth,
devMode.dmPelsHeight);
HWND hWin =

createWindow(GetModuleHandle(NULL) ,devMode .dmPosition.x+50,
devMode.dmPosition.y+50, devMode.dmPelsWidth-50,
devMode.dmPelsHeight-50) ;
if (hWin) { //got a window
HDC winDC = GetDC(hWin);
// TODO - set pixel format, create OpenGL context
ks
else
printf("Error creating window \n');
}//if attached to desktop
displayCount++;
} /7/while(enumdisplay);

April 17, 2009 | TB-04631-001_v01

11

10 and 12-Bit Grayscale Technology

Running this enumeration code on our 3 display example (shown in Figure 7) prints
out the following.

DeviceName = \\.\DISPLAY1
DeviceString = NVIDIA Quadro FX 1800
PRIMARY DISPLAY

Position/Size = (0, 0), 1280x1024

DeviceName = \\.\DISPLAY2
DeviceString = NVIDIA Quadro FX 4800
Position/Size = (1280, 0), 2560x2048
DeviceName = \\.\DISPLAY3
DeviceString = NVIDIA Quadro FX 4800
Position/Size = (3840, 0), 1600x1200

Note: The enumeration shown in this section abstracts special hardware capabilities of
the displays such as grayscale or color capability. For such physical display details,
we need access to the Extended display identification data (EDID)-the data
structure provided by the computer display to the graphics card. This is described
in the next section.

Mixing Grayscale and Color Displays

The previous section demonstrated how to get the general characteristics of a
display such as extent etc, but more specific properties of monitors will decide how
to layout our application. For example, user interface and launching elements are
normally placed on the regular color LCD’s while the radiological images will be
rendered to the grayscale displays. A display is defined to be grayscale compatible if
both the monitor and the GPU attached are grayscale enabled. To determine if a
monitor is grayscale we parse its EDID to get the model name and compare it with
the list of enabled monitors. This EDID is provided by the NVIDIA NVAPI [5] —
an SDK that gives low level direct access to NVIDIA GPUs and drivers on all
windows platforms. The following example shows enumerating the attached
displays and its associated panel and GPU string. Refer to the complete source in
CheckGrayscale.cpp for error checking functions and the isGrayscaleGPU and
isGrayscaleMonitor string parsing functions.

// Declare array of displays and associated grayscale flag

NvDisplayHandle hDisplay[NVAPI_MAX_DISPLAYS] = {0};

NvU32 displayCount = O;

// Enumerate all the display handles

for(int i=0,nvapiStatus=NVAPI_OK; nvapiStatus == NVAPI_OK; i++) {
nvapiStatus = NVAPI_EnumNvidiaDisplayHandle(i, &hDisplay[i]);
iT (nvapiStatus == NVAPI_OK) displayCount++;

3
printf(""No of displays = %u\n",displayCount);

//Loop through each display to check if its grayscale compatible
for(unsigned int i=0; i<displayCount; i++) {
//Get the GPU that drives this display
NvPhysicalGpuHandle hGPU[NVAPI_MAX_PHYSICAL_GPUS] = {0};
NvU32 gpuCount = O;
nvapiStatus =
NVAPI1_GetPhysicalGPUsFromDisplay(hDisplay[i],hGPU,&gpuCount);
nvapiCheckError(nvapiStatus);

April 17, 2009 | TB-04631-001_v01

12

10 and 12-Bit Grayscale Technology

//Get the GPU"s name as a string
NvAP1_ShortString gpuName;
NVAPI_GPU_GetFul IName (hGPU[O], gpuName);
printf("'Display %d, GPU %s™,i,gpuName);
nvapiCheckError(nvapiStatus);

//Get the display ID for subsequent EDID call

NvU32 id;

nvapiStatus = NVAPI_GetAssociatedDisplayOutputld(hDisplay[i],&id);
nvapiCheckError(nvapiStatus);

//Get the EDID for this display

NV_EDID curDisplayEdid = {0};

curDisplayEdid.version = NV_EDID_VER;

nvapiStatus = NVAPI_GPU_GetEDID(hGPU[O0], id,&curDisplayEdid);
nvapiCheckError(nvapiStatus);

//Check if the GPU & monitor both support grayscale

//and set the grayFlags table

if (isCGrayscaleGPU(gpuName)&& \\
isGrayscaleMonitor(curDisplayEdid.EDID_Data,NV_EDID_DATA_SIZE))
displayWinList[i]-grayScale = true;

else
displayWinList[i].grayScale = false;

Moving and Spanning Windows Across Displays

Many applications allow users to freely move windows across multiple displays. It
may be desirable for some applications to prevent spanning a grayscale image
window to a color display. In the event-handling code for a window move and
resize, we query all the displays that the current window spans to check for grayscale
compatibility. The following code snippet refers to the data structures populated in
the previous examples to do the runtime query.

LONG WINAPI winProc(HWND hWin, UINT uMsg, WPARAM wParam, LPARAM IParam)

{
switch (uMsg) {
case WM_SIZE:
RECT rect;
GetClientRect(hWin, &rect);
for (int i=0;i<displayCount;i++) {
//check if the window spans this display
if (displayWinList [i]-.spans(rect)) {
//Now check this is grayscale compatible display
it (MdisplayWinList[i].grayScale) {
//do something eg prevent spanning
b
}
} //end of for
break;
case WM_MOVE:
RECT rect;
//Repeat as above for WM_SIZE
b
3

April 17, 2009 | TB-04631-001_v01 |13

10 and 12-Bit Grayscale Technology

Targeting Specific GPUs for Rendering

The default behavior is for OpenGL commands to be sent to all GPUs. While this
works for many applications, it makes runtime graphics capability checking and
handling more complicated. Therefore, it is desirable to limit grayscale rendering to
the GPUs that are capable of grayscale output. In this case, when the window
moves to a display connected to a GPU where grayscale is not enabled, no screen
refresh or drawing happens. In fact, some applications prevent window movements
at all, minimizing user interaction to increase efficiency. To target specific GPUs for
rendering, we use the WGL NV Affinity extension [6] available for Windows on
Quadro professional cards.

The GPU Affinity for a window is defined by an affinity mask that contains a list of
GPUs responsible for the window drawing. This extension also introduces the
concept of an affinity DC which is simply a device context embedded with the
affinity mask. When an OpenGL context is created from this DC it inherits the
DC’s affinity mask that is immutable. For on-screen drawing, when this affinity
context is associated with a window DC, any OpenGL calls made with this context
current will be sent to the GPUs specified in the affinity mask.

fépuMask

N] =2
affinityDC R e

OpenGL
wglCreateContext
commands OpenGL
commands
affinityGLRC
wglMakeCurrent
winDC winDC

Side Color displays

Grayscale Displays

Figure 8. Using Affinity Extension to Target Specific GPUs
for OpenGL Rendering

April 17, 2009 | TB-04631-001_v01 |14

10 and 12-Bit Grayscale Technology

We introduce another class, CAFFGPU to encapsulate all the attributes for an Affinity
GPU and the affGPUList which is a collection of CAFFGPU”s.

class CAFFfGPU {

HDC affinityDC; // Device Context of affinity gpu
HGLRC affinityGLRC; // OpenGL Resource Context
public:
INnit(HGPUNV* pGPU, int num); //List of GPU handles in the mask
~ CAFFGPUQ);

X
unsigned int gpuCount = 0;
CAFFGPU affGPULiSt[MAX_NUM_GPUS]

To encapsulate the displays attached to affinity GPUs, the class CAFfDisplayWin is
extended from the existing CDisplayWin class to include a pointer to the
CAFFinityGPU instance that is responsible for its rendering,

class CDisplayWin {

éA%fGPU* pAfFinityGPU; //The list of GPU’s responsible for rendering
this window

¥

The following CAFFinityGPU: - init initialization function shows the affinity DC
and OpenGL resource context are created for an affinity GPU instance with just
one physical GPU specified in the mask. Of course, multiple physical GPUs can be
associated with one affinity GPU using this affinity mask for more complex
rendering topologies.

//Get affinity DC and RC for this GPU.
//1In the case below one GPU is associated with
void CAFFinityGPU: : init(HGPUNV* hGpu, int num) {
// Assume just 1 GPU in the list for simplicity
HGPUNV gpuMask[2];
gpuMask[0] = *hGpu;
gpuMask[1] = NULL;
//Create affinity-DC
ifT (I(affinityDC = wglCreateAffinityDCNV(gpuMask)))
ERR_MSG(**Unable to create GPU affinity DC");
//Set the pixel format for the affinity-DC
setPixelFormat(affinityDC);
//Create affinity-context from affinity-DC
if (I(affinityGLRC = wglCreateContext(gpuDC)))
ERR_MSG("'Unable to create GPU affinity RC™);

April 17, 2009 | TB-04631-001_v01 |15

10 and 12-Bit Grayscale Technology

Handles for all the system GPUs are enumerated by the following wg IEnumGpusNV
call. This example also shows another way of enumerating the display devices using
the wg lEnumGpuDevicesNV and GPU_DEVICE structure that resemble closely the
windows GDI enumDisplayDevices and DISPLAY_DEVICE introduced eatlier.

HGPUNV curNVGPU;
//Get a list of GPU"s
while ((gpuCount < MAX_NUM_GPUS) && wglEnumGpusNV(gpuCount, &curNVGPU)) {
unsigned int curDisplay = 0; //displays per current GPU
GPU_DEVICE gpuDevice;
gpuDevice.cb = sizeof(gpuDevice);
affGPUList[gpuCount]. init(&curNVGPU,1);
//loop through displays devices for this GPU
while (wglEnumGpuDevicesNV(curNVGPU, curDisplay, &gpuDevice)) {
displayWinList[displayCount].setGPUName(gpuDevice.DeviceString);
displayWinList[displayCount].setDisplayName(gpuDevice.DeviceName)
displayWinList[displayCount].setRect(gpuDevice.rect);
ifT ((gpuDevice.Flags & DISPLAY_DEVICE_PRIMARY_DEVICE))
displayWinList[displayCount].primary = true;
curDisplay++;
displayCount++;
} //end of enumerating displays
gpuCount++;
} //end of enumerating gpu®s

At run time, the GPU resource context must be made current to the window DC
before any OpenGL calls are made. This way, rendering only happens to the
subrectangles of the windows that overlaps parts of the desktops that are displayed
by the GPUs in the affinity mask of the resource context.

case WM_PAINT:
//Use the affinitv context for this window
CAffinityGPU: : ~CAFFinityGPU {
iT (gpuRC)
wgIDeleteContext(gpuRC);
if (gpuDC)
wg IDeleteDCNV(gpuDC) ;
3

At application shutdown, the Affinity DC must be deleted

Note: When the affinity GL context is used, it is not recommended to create another
OpenGL context from the Windows DC. Doing so may lead to unexpected
behavior when querying OpenGL attributes using glGetString

April 17, 2009 | TB-04631-001_v01 |16

10 and 12-Bit Grayscale Technology

Typical Multi-Display Configurations

We examine the commonly used multi-display setups that mix grayscale monitors
and color panels and their underlying GPU configuration.

Case 1. 2 5 MP Grayscale Displays Driven by 1 GPU

The most commonly used configuration for diagnostic imaging, a high-end Quadro
GPU drives 2 5 MP grayscale displays. One or two side displays are driven by a low-
end Quadro NVS card (if there are no PCI 16X slots available) or another Quadro

FX card.
Side Displ
Grayscale Displays

|
nviDiA

Quadro NVS or FX

N

A3
Grayscale Quadro FX
(PCIE x16)

Figure 9. 10 MP Grayscale Display Configuration

Table 3. Characteristics for 10 MP Setup

Total 10 MP 5120 x 2048 (landscape) or 4096 x 2560 (portrait)
Resolution

Side Display Quadro NVS 290 | 1 PCI 1x slot; good for system with only 2 PCI x16
(Primary) slots

Quadro FX 1800 | 1 PCI 16x; recommended for systems with 3 PCI
Quadro FX 3800 | 16x slots

Quadro FX 4800 | 2 PCI 16x; high-end systems with 4 PCI 16x slots

Grayscale Grayscale GPUs | 2 PCI 16x slot
Display (Table 2)

April 17, 2009 | TB-04631-001_v01 |17

10 and 12-Bit Grayscale Technology

Case 2. 4 5 MP Grayscale Displays Driven by 2 GPUs

Two high-end Quadro GPUs drive 4 5 MP grayscale displays. This configuration
assumes that the system has at least 4 PCI 16x slots. One or two side displays are
driven by a low-end Quadro NVS card.

Side Displays

N/
\ /@ .

Grayscale Quadro FX \
(PCIE x16)

Quadro NVS
(PCIE x1)

Figure 10. 3 GPUs Driving a 20 MP Grayscale Display

Table 4. Characteristics for the 20 MP Setup

Total Resolution 20 MP 10, 240 x 2048 (landscape) or

8192 x 2560 (portrait)

Side Display GPU
(Primary Display)

Quadro NVS 290 1 PCIE x1 slot

Grayscale Display Grayscale GPUs 2 PCIE x16 slot

GPU 1 (Table 2)

Grayscale Display
GPU 2

Grayscale GPU’
(Table 2)

2 PCIE x16 slot

April 17, 2009 | TB-04631-001_v01 |18

10 and 12-Bit Grayscale Technology

References

[1] Digital Imaging and Communications in Medicine (DICOM)- Part 14 grayscale
standard display function. http://medical.nema.org
[2] NDS Dome E5 Display

http://www.ndssi.com/products/dome/ex-grayscale/e5.html

[3] Eizo Radiforce GS520 Display
http:/ /www.radiforce.com/en/products/mono-gs520-dm.html

[4] Integer Texture Extension
http://www.opengl.org/registry/specs/EXT/texture integer.txt

[5] NVIDIA NVAPI — www.nvapi.com

[6] GPU Affinity Specification
http://developer.download.nvidia.com/opengl/specs/WGI. nv _gpu_affinity.t
xt

[7] lan Williams, HD is now 8MP &HDR, Slides from NVISION 2008.
http://www.nvidia.com/content/nvision2008/tech presentations/Professional
Visualization/NVISIONO8-8MP HDR.pdf

April 17, 2009 | TB-04631-001_v01 |19

10 and 12-Bit Grayscale Technology

Implementation Details

The following source code is divided into 3 separate projects. The intent is for these
components to be mixed and matched according to the user application
requirements.

GrayscaleDemo.sln

GrayscaleDemo.[cpp | h] — An example demo application that does the
various texture setups and allows the user to choose a grayscale image for

display.
CheckGrayscale.sln

CDisplayWin.[cpp | h] — Class CDisplayWin that encapsulates all attributes
of an attached display such name, extents, driving GPU, etc.

CheckGrayscale.cpp — Main program that enumerates all attached GPUs
and displays using Win GDI API and uses NVIDIA NVAPI to check the
displays that are grayscale compatible.

MultiGPUAffinity.sln
CAffGPU.[cpp | h] — Class CAffGPU that encapsulates an affinity GPU

with its attributes such as the DC, OpenGL context, etc.

CAffDisplayWin.[cpp | h] — Class CAffDisplayWin that extends
CDisplayWin to include affinity specific information.

MultiGPUAffinity.cpp — Main program that enumerate all GPUs creates
the affinity data structures and does the event handling.

April 17, 2009 | TB-04631-001_v01 |20

Notice

ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS, LISTS, AND
OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING PROVIDED “AS IS.” NVIDIA
MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR OTHERWISE WITH RESPECT TO THE
MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED WARRANTIES OF NONINFRINGEMENT,
MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other
rights of third parties that may result from its use. No license is granted by implication or otherwise under
any patent or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to
change without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Macrovision Compliance Statement

NVIDIA Products that are Macrovision enabled can only be sold or distributed to buyers with a valid and
existing authorization from Macrovision to purchase and incorporate the device into buyer’s products.

Macrovision copy protection technology is protected by U.S. patent numbers 5,583,936; 6,516,132;
6,836,549; and 7,050,698 and other intellectual property rights. The use of Macrovision’s copy protection
technology in the device must be authorized by Macrovision and is intended for home and other limited pay-
per-view uses only, unless otherwise authorized in writing by Macrovision. Reverse engineering or
disassembly is prohibited

Trademarks

NVIDIA, the NVIDIA logo, CUDA and Quadro are trademarks or registered trademarks of NVIDIA Corporation
in the United States and other countries. Other company and product names may be trademarks of the
respective companies with which they are associated.

Copyright
© 2009 NVIDIA Corporation. All rights reserved.

NVIDIA Corporation | 2701 San Tomas Expressway | Santa Clara, CA 95050 | www.nvidia.com nVIDIA,

