
NVIDIA CUDA Software and GPU
Parallel Computing Architecture

David B. Kirk, Chief Scientist

© NVIDIA Corporation 2006-2008 2

Outline

Applications of GPU Computing
CUDA Programming Model Overview
Programming in CUDA – The Basics
How to Get Started!

Exercises / Examples Interleaved with Presentation
Materials

Homework for later ☺

© NVIDIA Corporation 2006-2008 3

Future Science and Engineering
Breakthroughs Hinge on Computing

Computational
Modeling

Computational
Chemistry

Computational
Medicine

Computational
Physics

Computational
Biology

Computational
Finance

Computational
Geoscience

Image
Processing

© NVIDIA Corporation 2006-2008 4

Faster is not “just Faster”

2-3X faster is “just faster”
Do a little more, wait a little less
Doesn’t change how you work

5-10x faster is “significant”
Worth upgrading
Worth re-writing (parts of) the application

100x+ faster is “fundamentally different”
Worth considering a new platform
Worth re-architecting the application
Makes new applications possible
Drives “time to discovery” and creates fundamental
changes in Science

© NVIDIA Corporation 2006-2008 5

The GPU is a New Computation Engine

Relative
Floating Point
Performance

Era of Shaders

Fully Programmable

0

10

20

30

40

50

60

70

80

2002 2003 2004 2005 2006

G80

1

© NVIDIA Corporation 2006-2008 6

Closely Coupled CPU-GPU

Operation 1 Operation 2 Operation 3

Init
Alloc

Function Lib Lib Function Function

CPU
GPU

Integrated programming model
High speed data transfer – up to 3.2 GB/s
Asynchronous operation
Large GPU memory systems

© NVIDIA Corporation 2006-2008 7

Millions of CUDA-enabled GPUs

Total GPUs
(millions)

25

50

2006 2007

Dedicated computing
C on the GPU
Servers through Notebook PCs

© NVIDIA Corporation 2006-2008 8

TeslaTM

High Performance Computing
Quadro®

Design & Creation
GeForce®

Entertainment

© NVIDIA Corporation 2006-2008 9

VMD/NAMD Molecular Dynamics

http://www.ks.uiuc.edu/Research/vmd/projects/ece498/lecture/

240X speedup
Computational biology

© NVIDIA Corporation 2006-2008 10

EvolvedMachines
Simulate the brain circuit
Sensory computing: vision, olfactory
130X Speed up

EvolvedMachines

© NVIDIA Corporation 2006-2008 11

Hanweck Associates

VOLERA, real-time options implied volatility engine

Accuracy results with SINGLE PRECISION

Evaluate all U.S. listed equity options in <1 second

(www.hanweckassoc.com)

© NVIDIA Corporation 2006-2008 12

LIBOR APPLICATION:
Mike Giles and Su Xiaoke
Oxford University Computing Laboratory

LIBOR Model with portfolio of swaptions
80 initial forward rates and 40 timesteps to maturity
80 Deltas computed with adjoint approach

4x6.4s6x2.9sClearSpeed Advance
2 CSX600

149x0.18s400x0.045sNVIDIA 8800 GTX

-26.9s-18.1sIntel Xeon

GreeksNo Greeks

Source codes and papers available at:
http://web.comlab.ox.ac.uk/oucl/work/mike.giles/hpc

“The performance of the CUDA code on the 8800 GTX is exceptional”
-Mike Giles

© NVIDIA Corporation 2006-2008 13

Manifold 8 GIS Application

From the Manifold 8 feature list:
… applications fitting CUDA capabilities that might have taken tens of
seconds or even minutes can be accomplished in hundredths of
seconds. … CUDA will clearly emerge to be the future of almost all
GIS computing

From the user manual:
"NVIDIA CUDA … could well be the most revolutionary thing to
happen in computing since the invention of the microprocessor

© NVIDIA Corporation 2006-2008 14

nbody Astrophysics

http://progrape.jp/cs/

Astrophysics research

1 GF on standard PC

300+ GF on GeForce 8800GTX

Faster than GRAPE-6Af custom simulation computer

© NVIDIA Corporation 2006-2008 15

17X with MATLAB CPU+GPU

Pseudo-spectral simulation of 2D Isotropic turbulence

Matlab: Language of Science

http://www.amath.washington.edu/courses/571-winter-2006/matlab/FS_2Dturb.m

http://developer.nvidia.com/object/matlab_cuda.html

CUDA Programming Model Overview

© NVIDIA Corporation 2006-2008 17

GPU Computing

GPU is a massively parallel processor
NVIDIA G80: 128 processors
Support thousands of active threads (12,288 on G80)

GPU Computing requires a programming model that
can efficiently express that kind of parallelism

Most importantly, data parallelism

CUDA implements such a programming model

© NVIDIA Corporation 2006-2008 18

CUDA Kernels and Threads

Parallel portions of an application are executed on
the device as kernels

One kernel is executed at a time
Many threads execute each kernel

Differences between CUDA and CPU threads
CUDA threads are extremely lightweight

Very little creation overhead
Instant switching

CUDA uses 1000s of threads to achieve efficiency
Multi-core CPUs can use only a few

Definitions:
Device = GPU; Host = CPU
Kernel = function that runs on the device

© NVIDIA Corporation 2006-2008 19

Arrays of Parallel Threads

A CUDA kernel is executed by an array of threads
All threads run the same code
Each thread has an ID that it uses to compute memory
addresses and make control decisions

76543210

…
float x = input[threadID];
float y = func(x);
output[threadID] = y;
…

threadID

© NVIDIA Corporation 2006-2008 20

Thread Cooperation

The Missing Piece: threads may need to cooperate

Thread cooperation is valuable
Share results to save computation
Synchronization
Share memory accesses

Drastic bandwidth reduction

Thread cooperation is a powerful feature of CUDA

© NVIDIA Corporation 2006-2008 21

…
float x =
input[threadID];
float y = func(x);
output[threadID] = y;
…

threadID

Thread Block 0

…
…
float x =
input[threadID];
float y = func(x);
output[threadID] = y;
…

Thread Block 0

…
float x =
input[threadID];
float y = func(x);
output[threadID] = y;
…

Thread Block N - 1

Thread Blocks: Scalable Cooperation

Divide monolithic thread array into multiple blocks
Threads within a block cooperate via shared memory
Threads in different blocks cannot cooperate

Enables programs to transparently scale to any
number of processors!

76543210 76543210 76543210

© NVIDIA Corporation 2006-2008 22

Transparent Scalability

Hardware is free to schedule thread blocks
on any processor at any time

A kernel scales across any number of parallel
multiprocessors

Device

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Kernel grid

Block 0 Block 1

Block 2 Block 3

Block 4 Block 5

Block 6 Block 7

Device

Block 0 Block 1 Block 2 Block 3

Block 4 Block 5 Block 6 Block 7

© NVIDIA Corporation 2006-2008 23

CUDA Programming Model

A kernel is executed by a
grid of thread blocks

A thread block is a batch
of threads that can
cooperate with each
other by:

Sharing data through
shared memory
Synchronizing their
execution

Threads from different
blocks cannot cooperate

Host

Kernel
1

Kernel
2

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Grid 2

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

© NVIDIA Corporation 2006-2008 24

Processors execute computing threads
Thread Execution Manager issues threads
128 Thread Processors grouped into 16 Multiprocessors (SMs)
Parallel Data Cache (Shared Memory) enables thread
cooperation

G80 Device

Thread Execution Manager

Input Assembler

Host

Parallel
Data

Cache

Global Memory

Load/store

Parallel
Data

Cache

Thread Processors

Parallel
Data

Cache

Parallel
Data

Cache

Thread Processors

Parallel
Data

Cache

Parallel
Data

Cache

Thread Processors

Parallel
Data

Cache

Parallel
Data

Cache

Thread Processors

Parallel
Data

Cache

Parallel
Data

Cache

Thread Processors

Parallel
Data

Cache

Parallel
Data

Cache

Thread Processors

Parallel
Data

Cache

Parallel
Data

Cache

Thread Processors

Parallel
Data

Cache

Parallel
Data

Cache

Thread Processors

© NVIDIA Corporation 2006-2008 25

Thread and Block IDs

Threads and blocks have IDs
Each thread can decide what
data to work on

Block ID: 1D or 2D
Thread ID: 1D, 2D, or 3D

Simplifies memory
addressing when processing
multi-dimensional data

Image processing
Solving PDEs on volumes

Device

Grid 1

Block
(0, 0)

Block
(1, 0)

Block
(2, 0)

Block
(0, 1)

Block
(1, 1)

Block
(2, 1)

Block (1, 1)

Thread
(0, 1)

Thread
(1, 1)

Thread
(2, 1)

Thread
(3, 1)

Thread
(4, 1)

Thread
(0, 2)

Thread
(1, 2)

Thread
(2, 2)

Thread
(3, 2)

Thread
(4, 2)

Thread
(0, 0)

Thread
(1, 0)

Thread
(2, 0)

Thread
(3, 0)

Thread
(4, 0)

© NVIDIA Corporation 2006-2008 26

Kernel Memory Access

Registers

Global Memory (external DRAM)
Kernel input and output data reside here
Off-chip, large
Uncached

Shared Memory (Parallel Data Cache)
Shared among threads in a single block
On-chip, small
As fast as registers

Grid

Global
Memory

Block (0, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Thread (0, 0)

Registers

Thread (1, 0)

Registers

Host

The host can read & write global memory but not shared memory

© NVIDIA Corporation 2006-2008 27

Execution Model

Kernels are launched in grids
One kernel executes at a time

A block executes on one Streaming Multiprocessor
(SM)

Does not migrate
Several blocks can reside concurrently on one SM

Control limitations (of G8X/G9X GPUs):
At most 8 concurrent blocks per SM
At most 768 concurrent threads per SM

Number is further limited by SM resources
Register file is partitioned among all resident threads
Shared memory is partitioned among all resident thread blocks

© NVIDIA Corporation 2006-2008 28

CUDA Advantages over Legacy GPGPU
(Legacy GPGPU is programming GPU through graphics APIs)

Random access byte-addressable memory
Thread can access any memory location

Unlimited access to memory
Thread can read/write as many locations as needed

Shared memory (per block) and thread
synchronization

Threads can cooperatively load data into shared memory
Any thread can then access any shared memory location

Low learning curve
Just a few extensions to C
No knowledge of graphics is required

No graphics API overhead

© NVIDIA Corporation 2006-2008 29

CUDA Model Summary
Thousands of lightweight concurrent threads

No switching overhead
Hide instruction and memory latency

Shared memory
User-managed L1 cache
Thread communication / cooperation within blocks

Random access to global memory
Any thread can read/write any location(s)

Current generation hardware:
Up to 128 streaming processors

Memory Location Cached Access Scope (“Who?”)
Shared On-chip N/A Read/write All threads in a block
Global Off-chip No Read/write All threads + host

Programming CUDA
The Basics

© NVIDIA Corporation 2006-2008 31

Outline of CUDA Basics

Basics to set up and execute GPU code:
GPU memory management
GPU kernel launches
Some specifics of GPU code

Basics of some additional features:
Vector types
Managing multiple GPUs, multiple CPU threads
Checking CUDA errors
CUDA event API
Compilation path

NOTE: only the basic features are covered
See the Programming Guide for many more API functions

© NVIDIA Corporation 2006-2008 32

Managing Memory

Host (CPU) code manages device (GPU) memory:
Allocate / free
Copy data
Applies to global and constant device memory (DRAM)

Shared memory (on-chip) is statically allocated
Host manages texture data:

Stored on GPU
Takes advantage of texture caching / filtering / clamping

Host manages pinned (non-pageable) CPU memory:
Allocate / free

© NVIDIA Corporation 2006-2008 33

GPU Memory Allocation / Release

cudaMalloc(void ** pointer, size_t nbytes)
cudaMemset(void * pointer, int value, size_t count)
cudaFree(void* pointer)

int n = 1024;
int nbytes = 1024*sizeof(int);
int *d_a = 0;
cudaMalloc((void**)&d_a, nbytes);
cudaMemset(d_a, 0, nbytes);
cudaFree(d_a);

© NVIDIA Corporation 2006-2008 34

Data Copies

cudaMemcpy(void *dst, void *src, size_t nbytes,
enum cudaMemcpyKind direction);

direction specifies locations (host or device) of src and dst
Blocks CPU thread: returns after the copy is complete
Doesn’t start copying until previous CUDA calls complete

cudaMemcpyAsync(..., cudaStream_t streamId)
Host memory must be pinned (allocate with cudaMallocHost)
Returns immediately
doesn’t start copying until previous CUDA calls in stream
streamId or 0 complete

enum cudaMemcpyKind
cudaMemcpyHostToDevice
cudaMemcpyDeviceToHost
cudaMemcpyDeviceToDevice

© NVIDIA Corporation 2006-2008 35

Exercise 1

We’re going to dive right into programming CUDA

In exercise 1 you will learn to use cudaMalloc and
cudaMemcpy

© NVIDIA Corporation 2006-2008 36

Executing Code on the GPU

C function with some restrictions
Can only access GPU memory
No variable number of arguments (“varargs”)
No static variables

Must be declared with a qualifier
__global__ : invoked from within host (CPU) code,

cannot be called from device (GPU) code
must return void

__device__ : called from other GPU functions,
cannot be called from host (CPU) code

__host__ : can only be executed by CPU, called from host

__host__ and __device__ qualifiers can be combined
sample use: overloading operators
Compiler will generate both CPU and GPU code

© NVIDIA Corporation 2006-2008 37

Launching kernels on GPU
Modified C function call syntax:
kernel<<<dim3 grid, dim3 block, int smem, int stream>>>(…)

Execution Configuration (“<<< >>>”):
grid dimensions: x and y
thread-block dimensions: x, y, and z
shared memory: number of bytes per block for extern
smem variables declared without size

optional, 0 by default
stream ID

optional, 0 by default
dim3 grid(16, 16);
dim3 block(16,16);
kernel<<<grid, block, 0, 0>>>(...);
kernel<<<32, 512>>>(...);

© NVIDIA Corporation 2006-2008 38

CUDA Built-in Device Variables

All __global__ and __device__ functions have
access to these automatically defined variables

dim3 gridDim;
Dimensions of the grid in blocks (gridDim.z
unused)

dim3 blockDim;

Dimensions of the block in threads
dim3 blockIdx;

Block index within the grid
dim3 threadIdx;

Thread index within the block

© NVIDIA Corporation 2006-2008 39

Minimal Kernels

__global__ void minimal(int* d_a)
{

*d_a = 13;
}

__global__ void assign(int* d_a, int value)
{

int idx = blockDim.x * blockIdx.x + threadIdx.x;

d_a[idx] = value;
} Common Pattern!

© NVIDIA Corporation 2006-2008 40

Minimal Kernel for 2D data

__global__ void assign2D(int* d_a, int w, int h, int value)
{

int iy = blockDim.y * blockIdx.y + threadIdx.y;
int ix = blockDim.x * blockIdx.x + threadIdx.x;
int idx = iy * w + ix;

d_a[idx] = value;
}
...
assign2D<<<dim3(64, 64), dim3(16, 16)>>>(...);

© NVIDIA Corporation 2006-2008 41

Exercise 2: your first CUDA kernel

In this exercise you will write and execute a simple
CUDA kernel

© NVIDIA Corporation 2006-2008 42

Host Synchronization

All kernel launches are asynchronous
control returns to CPU immediately
kernel executes after all previous CUDA calls have
completed

cudaMemcpy is synchronous
control returns to CPU after copy completes
copy starts after all previous CUDA calls have completed

cudaThreadSynchronize()
blocks until all previous CUDA calls complete

Async API provides:
GPU CUDA-call streams
non-blocking cudaMemcpyAsync

© NVIDIA Corporation 2006-2008 43

Example: Increment Array Elements

CPU program CUDA program

void increment_cpu(float *a, float b, int N)
{

for (int idx = 0; idx<N; idx++)
a[idx] = a[idx] + b;

}

void main()
{

.....
increment_cpu(a, b, N);

}

__global__ void increment_gpu(float *a, float b, int N)
{

int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < N)

a[idx] = a[idx] + b;
}

void main()
{

…..
dim3 dimBlock (blocksize);
dim3 dimGrid(ceil(N / (float)blocksize));
increment_gpu<<<dimGrid, dimBlock>>>(a, b, N);

}

© NVIDIA Corporation 2006-2008 44

Example: Increment Array Elements

Increment N-element vector a by scalar b

Let’s assume N=16, blockDim=4 -> 4 blocks

blockIdx.x=0
blockDim.x=4
threadIdx.x=0,1,2,3
idx=0,1,2,3

blockIdx.x=1
blockDim.x=4
threadIdx.x=0,1,2,3
idx=4,5,6,7

blockIdx.x=2
blockDim.x=4
threadIdx.x=0,1,2,3
idx=8,9,10,11

blockIdx.x=3
blockDim.x=4
threadIdx.x=0,1,2,3
idx=12,13,14,15

int idx = blockDim.x * blockId.x + threadIdx.x;
will map from local index threadIdx to global index

NB: blockDim should be >= 32 in real code, this is just an example

© NVIDIA Corporation 2006-2008 45

Example: Host Code
// allocate host memory
unsigned int numBytes = N * sizeof(float)
float* h_A = (float*) malloc(numBytes);

// allocate device memory
float* d_A = 0;
cudaMalloc((void**)&d_A, numbytes);

// copy data from host to device
cudaMemcpy(d_A, h_A, numBytes, cudaMemcpyHostToDevice);

// execute the kernel
increment_gpu<<< N/blockSize, blockSize>>>(d_A, b);

// copy data from device back to host
cudaMemcpy(h_A, d_A, numBytes, cudaMemcpyDeviceToHost);

// free device memory
cudaFree(d_A);

© NVIDIA Corporation 2006-2008 46

Variable Qualifiers (GPU code)

__device__
stored in device memory (large, high latency, no cache)
Allocated with cudaMalloc (__device__ qualifier implied)
accessible by all threads
lifetime: application

__constant__
same as __device__, but cached and read-only by GPU
written by CPU via cudaMemcpyToSymbol(...) call
lifetime: application

__shared__
stored in on-chip shared memory (very low latency)
accessible by all threads in the same thread block
lifetime: kernel launch

Unqualified variables:
scalars and built-in vector types are stored in registers
arrays of more than 4 elements stored in device memory

© NVIDIA Corporation 2006-2008 47

CUDA Memory Spaces

Each thread can:
Read/write per-thread registers
Read/write per-thread local memory
Read/write per-block shared memory
Read/write per-grid global memory
Read only per-grid constant memory
Read only per-grid texture memory

Grid

Constant
Memory

Texture
Memory

Global
Memory

Block (0, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

Block (1, 0)

Shared Memory

Local
Memory

Thread (0, 0)

Registers

Local
Memory

Thread (1, 0)

Registers

HostThe host can read/write
global, constant, and
texture memory (stored
in DRAM)

© NVIDIA Corporation 2006-2008 48

CUDA Memory Spaces
Global and Shared Memory introduced before

Most important, commonly used
Local, Constant, and Texture for convenience/performance

Local: automatic array variables allocated there by compiler
Constant: useful for uniformly-accessed read-only data

Cached (see programming guide)
Texture: useful for spatially coherent random-access read-
only data

Cached (see programming guide)
Provides address clamping and wrapping

Memory Location Cached Access Scope (“Who?”)
Local Off-chip No Read/write One thread

Shared On-chip N/A Read/write All threads in a block

Global Off-chip No Read/write All threads + host

Constant Off-chip Yes Read All threads + host

Texture Off-chip Yes Read All threads + host

© NVIDIA Corporation 2006-2008 49

Built-in Vector Types

Can be used in GPU and CPU code

[u]char[1..4], [u]short[1..4], [u]int[1..4],
[u]long[1..4], float[1..4]

Structures accessed with x, y, z, w fields:
uint4 param;
int y = param.y;

dim3
Based on uint3

Used to specify dimensions
Default value (1,1,1)

© NVIDIA Corporation 2006-2008 50

Thread Synchronization Function

void __syncthreads();

Synchronizes all threads in a block
Generates barrier synchronization instruction
No thread can pass this barrier until all threads in the
block reach it
Used to avoid RAW / WAR / WAW hazards when
accessing shared memory

Allowed in conditional code only if the conditional is
uniform across the entire thread block

© NVIDIA Corporation 2006-2008 51

GPU Atomic Integer Operations

Atomic operations on integers in global memory:
Associative operations on signed/unsigned ints
add, sub, min, max, ...
and, or, xor
Increment, decrement
Exchange, compare and swap

Requires hardware with compute capability 1.1

© NVIDIA Corporation 2006-2008 52

Device Management

CPU can query and select GPU devices
cudaGetDeviceCount(int *count)
cudaSetDevice(int device)
cudaGetDevice(int *current_device)
cudaGetDeviceProperties(cudaDeviceProp* prop,

int device)
cudaChooseDevice(int *device, cudaDeviceProp* prop)

Multi-GPU setup:
device 0 is used by default
one CPU thread can control only one GPU

multiple CPU threads can control the same GPU
– calls are serialized by the driver

© NVIDIA Corporation 2006-2008 53

Multiple CPU Threads and CUDA

CUDA resources allocated by a CPU thread can be
consumed only by CUDA calls from the same CPU
thread

Violation Example:
CPU thread 2 allocates GPU memory, stores address in p
thread 3 issues a CUDA call that accesses memory via p

© NVIDIA Corporation 2006-2008 54

CUDA Error Reporting to CPU

All CUDA calls return error code:
except for kernel launches
cudaError_t type

cudaError_t cudaGetLastError(void)
returns the code for the last error (no error has a code)

char* cudaGetErrorString(cudaError_t code)
returns a null-terminted character string describing the
error

printf(“%s\n”, cudaGetErrorString(cudaGetLastError()));

© NVIDIA Corporation 2006-2008 55

CUDA Event API

Events are inserted (recorded) into CUDA call streams
Usage scenarios:

measure elapsed time for CUDA calls (clock cycle precision)
query the status of an asynchronous CUDA call
block CPU until CUDA calls prior to the event are completed
asyncAPI sample in CUDA SDK

cudaEvent_t start, stop;
cudaEventCreate(&start); cudaEventCreate(&stop);
cudaEventRecord(start, 0);
kernel<<<grid, block>>>(...);
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
float et;
cudaEventElapsedTime(&et, start, stop);
cudaEventDestroy(start); cudaEventDestroy(stop);

© NVIDIA Corporation 2006-2008 56

Compiling CUDA

NVCC

C/C++ CUDA
Application

PTX to Target
Compiler

G80 … GPU

Target code

PTX Code Virtual

Physical

CPU Code

© NVIDIA Corporation 2006-2008 57

NVCC & PTX Virtual Machine

EDG
Separate GPU vs. CPU code

Open64
Generates GPU PTX
assembly

Parallel Thread eXecution
(PTX)

Virtual Machine and ISA
Programming model
Execution resources and
state

EDG

C/C++ CUDA
Application

CPU Code

Open64

PTX Code

ld.global.v4.f32 {$f1,$f3,$f5,$f7}, [$r9+0];
mad.f32 $f1, $f5, $f3, $f1;

float4 me = gx[gtid];
me.x += me.y * me.z;

© NVIDIA Corporation 2006-2008 58

Compilation

Any source file containing CUDA language
extensions must be compiled with nvcc
NVCC is a compiler driver

Works by invoking all the necessary tools and compilers
like cudacc, g++, cl, ...

NVCC can output:
Either C code (CPU Code)

That must then be compiled with the rest of the application
using another tool

Or PTX object code directly
An executable with CUDA code requires:

The CUDA core library (cuda)
The CUDA runtime library (cudart)

if runtime API is used
loads cuda library

© NVIDIA Corporation 2006-2008 59

Exercise 3: Reverse a Small Array

Given an input array, reverse it

In this part, you will reverse a small array
the Size of a single thread block

© NVIDIA Corporation 2006-2008 60

Exercise 4: Reverse a Large Array

Given a large input array, reverse it

This requires launching many thread blocks

Getting Started

© NVIDIA Corporation 2006-2008 62

Get CUDA

CUDA Zone: http://nvidia.com/cuda
Programming Guide and other Documentation
Toolkits and SDKs for:

Windows
Linux
MacOS

Libraries
Plugins
Forums
Code Samples

© NVIDIA Corporation 2006-2008 63

Come visit the class!
UIUC ECE498AL –

Programming Massively
Parallel Processors
(http://courses.ece.uiuc.edu/ece498/al/)

David Kirk (NVIDIA) and Wen-
mei Hwu (UIUC) co-instructors

CUDA programming, GPU
computing, lab exercises, and
projects

Lecture slides and voice
recordings

© NVIDIA Corporation 2006-2008 64

Questions?

