GPU TECHNOLOGY CONFERENCE

State of the Art Application Development on GPUs

| Seoul, Korea | December 18, 2010 Phillip Miller, NVIDIA

Paul Arden, mental images

NVIDIA Resources for Application Developers

DEVELOPMENT TOOLS

CUDA Toolkit Complete GPU computing development kit

cuda-gdb GPU hardware debugging

Visual Profiler GPU hardware profiler for CUDA C and OpenCL

Parallel Nsight

Integrated development environment for Visual Studio

NVPerfKit OpenGL|D3D performance tools

FX Composer Shader Authoring IDE

SDKs AND CODE SAMPLES

GPU Computing SDK CUDA C, OpenCL, DirectCompute code samples and documentation

Graphics SDK DirectX & OpenGL code samples

PhysX SDK Complete game physics solution OpenAutomate SDK for test automation

VIDEO LIBRARIES

Video Decode Acceleration NVCUVID / NVCUVENC DXVA Win7 MFT

Video Encode Acceleration NVCUVENC Win7 MFT

Post Processing Noise reduction / De-interlace/ Polyphase scaling / Color process

ENGINES & LIBRARIES

Math Libraries CUFFT, CUBLAS, CUSPARSE, CURAND, ...

NPP Image Libraries Performance primitives for imaging

App Acceleration Engines Optimized software modules for GPU acceleration

Shader Library Shader and post processing

Optimization Guides

Best Practices for GPU computing and Graphics development

http://developer.nvidia.com

Licensed solutions from mental images

Integrated Renderers

mental ray

the world's most widely adopted professional ray tracing solution

iray

The world's first commercially available, physically correct rendering with GPU acceleration

More...

Numerous renderers to fill particular needs.

Material Workflows

metaSL

Shading language extending from mental ray to real-time shader APIs

mental mill

Visual shader editor for end users to create and edit MetaSL shaders

Application Building

RealityServer

A 3D web services development platform supporting collaboration and a wealth of rendering options

neuray

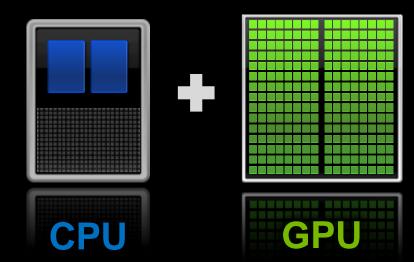
Application foundation for building 3D applications with native couplings to mental images rendering solutions

mental matter

Higher order surface definition & approximation

Distributed Processing

DiCE


Highly scalable distributed processing solution for neuray applications

www.mental.com

"GPGPU or GPU Computing"

- Using all processors in the system for the things they are best at doing:
 - Evolution of CPUs makes them good at sequential, serial tasks
 - Evolution of GPUs makes them good at **parallel** processing

CUDA - NVIDIA's Architecture for GPU Computing

				Python,
CUDA C/C++	OpenCL	Direct Compute	Fortran	Java, .NET, more
+100k developers In production usage since 2008 SDK + Libs + Visual Profiler and Debugger	Commercial OpenCL Conformant Driver Publicly Available for all CUDA capable GPU's SDK + Visual Profiler	 Microsoft API for GPU Computing Supports all CUDA- Architecture GPUs (DX10 and DX11) 	PGI Accelerator PGI CUDA Fortran	PyCUDA GPU.NET jCUDA
		GPU		

with the CUDA Parallel Computing Architecture

Broad Adoption

- **+250M** CUDA-enabled GPUs in use
- +650k CUDA Toolkit downloads in last 2 Yrs
- +350 Universities teaching GPU Computing on the CUDA Architecture
- Cross Platform: Linux, Windows, MacOS
- Uses span
 HPC to Consumer

OpenCL is a trademark of Apple Inc. used under license to the Khronos Group Inc.

Parallel Nsight, Visual Profiler, GDB, Tau CUDA, etc.

Maintain original as CPU fallback if desired.

Production Example

Optimize

Deploy

GPU Computing Software Stack

Your GPU Computing Application

Application Acceleration Engines Middleware, Modules & Plug-ins

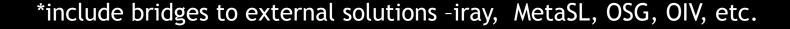
Foundation Libraries

Development Environment Languages, Device APIs, Compilers, Debuggers, Profilers, etc.

CUDA Architecture

NVIDIA Application Acceleration Engines (AXE)

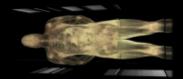
A family of highly optimized software modules, enabling software developers to supercharge applications with high performance capabilities that exploit NVIDIA GPUs.



- Free to acquire, license and deploy
- Valuable features and superior performance are quick to add
- App's can evolve quickly, as API's abstract GPU advancements

Application Acceleration Engines

- PhysX physics & dynamics engine
 - breathing life into real-time 3D; Apex enabling 3D animators
- Cg/CgFX programmable shading engine
 - enhancing realism across platforms and hardware
- **SceniX*** scene management engine
 - the basis of a real-time 3D system
- **CompleX** scene scaling engine
 - giving a broader/faster view on massive data
- **OptiX** ray tracing engine
 - making ray tracing ultra fast to execute and develop



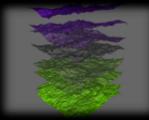
Accelerating Application Development

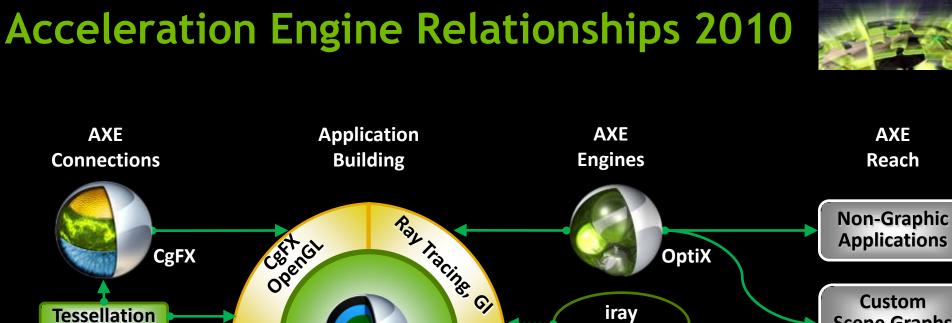
App Example: Auto Styling

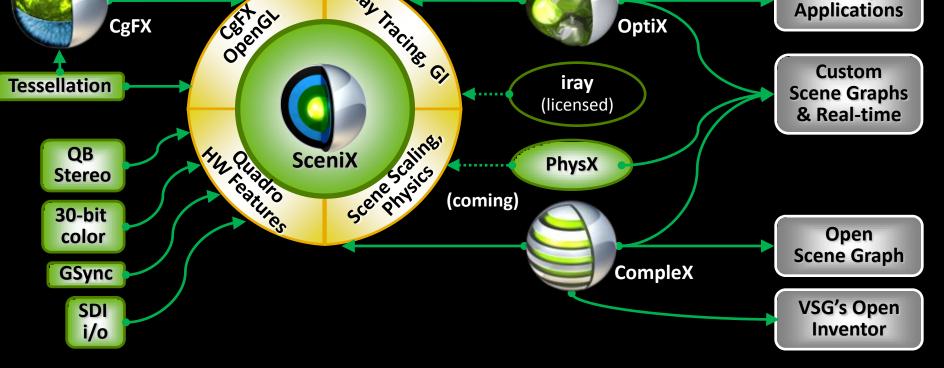
Establish the Scene
 = SceniX

2. Maximize interactive quality + CgFX + OptiX

- 3. Maximize production
 - quality + **iray** (licensed)

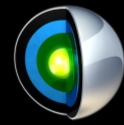



App Example: Seismic Interpretation


Establish the Scene
 = SceniX

2.

- Maximize data visualization
- + quad buffered stereo
- + volume rendering
- + ambient occlusion
- 3. Maximize scene size + CompleX



AXE

Reach

SceniX[™] Scene Management Engine

The fastest start for building a real-time 3D app - wherever there's a need to analyze 3D data, make decisions, and convey results in real-time

- Highly efficient scene graph for rapidly building real-time
 3D app's for any OpenGL GPU on Windows/Linux
- Integration interface for using GUI frameworks (Qt, wxWidgets, etc.)
- Fast on-ramp to GPU capabilities & NVIDIA engines
 - Quad Buffered Stereo, SDI i/o, 30-bit color, etc.
 - CgFX, CompleX, OptiX, Tessellation
- Source Code license available (upon approval)
- Differentiator Multiple Render Targets

Showcase images courtesy Autodesk

SceniX - Example Companies/Products +5k downloads/version v6 in July

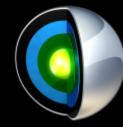
DeltaGen

Autodesk[®] Showcase

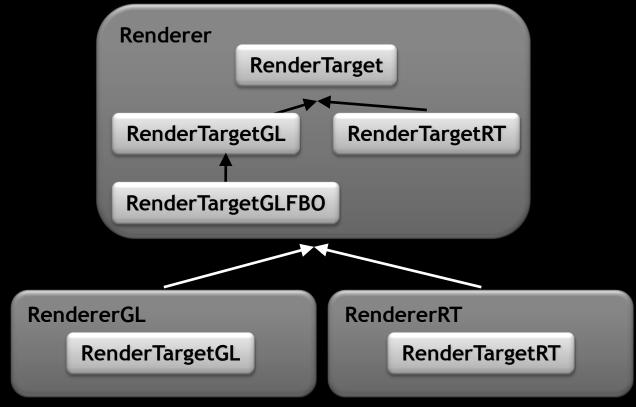
LIGHTWORKS **Rendering Realism**

SceniX and CgFX example

Quadro 6000 Demo Viewer

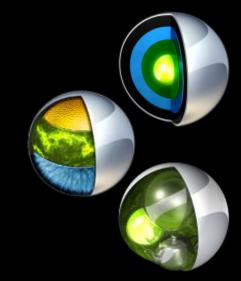


SceniX - Renderer Independency


- Separates rendering from destination (tiles, cameras, viewports, renderers, image gen, etc.)
- Multiple render engines within a single render window
- Together enabling:
 - Stack Rendering (multiple techniques and renderers)
 - Hybrid Rending (raster + ray tracing)
 - Post Processing
 - Platform Impendence

Stack Rendering Example

 Combining two different renderers to create realistic reflections on top of an OpenGL rendered object



SENTED BY 🛞 NVIDIA.

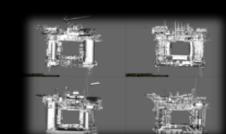
Multiple Rendering Example

 New Demo Viewer coming in 2011 with Multiple Rendering Capabilities

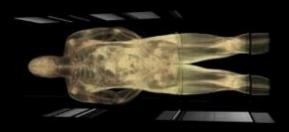
- Coordinates shader usage between OpenGL, CgFX, OptiX and iray
- Cross platform, using Qt
- Source will be available to registered developers

CompleX™ Scene Scaling Engine

Keeps complex scenes interactive as they exceed single GPU memory, by managing the combined memory and performance of multiple GPUs


Delivers smooth performance on very large scenes:

- 32GB in size on Quadro FX 5800
- 48GB in size on Quadro 6000

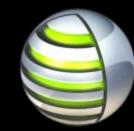

SDK for any OGL application

Ready to use in SceniX, OpenSceneGraph, and Open Inventor 8.1

SceniX and CgFX example

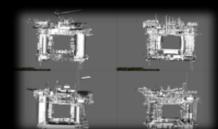
Quadro 6000 Demo Viewer

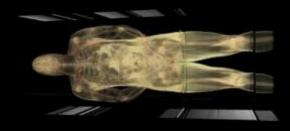
CompleX™ Example Companies


National Institute of Health

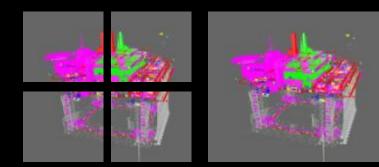
VSG Open Inventor

StormFjord & Statoil

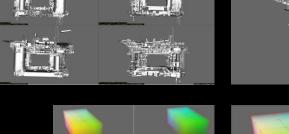

CompleX[™] - Distribute & Composite

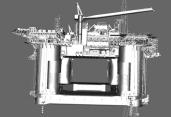

Made of two components, that can be used independently:

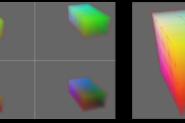
- Data Distribution
 - slicing scenes across GPUs to keep them within frame buffer memory
- Image Compositing
 - the fastest available image combination from multiple GPU outputs
- Multiple approaches for each component to accommodate different data and transparency needs

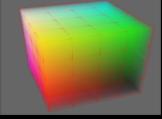


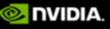
CompleX[™] - Methods


>500 million pixels/second


Screen Compositing




Depth Compositing


Alpha Compositing

CompleX[™] - Composite

The industry's fastest multi-GPU compositor (no SLI req'd)

- Uses unique NVIDIA hw/driver features
 copy_tex_image across multiple GPUs
- Highly optimized for GPU to GPU: multiple transfer paths optimized for a wide variety of multi-GPU and chipset configurations.
- Results in the best performance for given HW
- Resulting event loop typically needs +2 lines of code

NVIDIA OptiX[™] Ray Tracing Engine

A programmable ray tracing pipeline for accelerating interactive ray tracing applications - from functions, to tasks, to complete renderers. In use within a wide variety of markets - not just rendering

- For Windows, Linux, and OSX on all CUDA capable GPUs
- C-based shaders/functions (minimal CUDA exp. needed)
- Ease of Development you concentrate on writing ray tracing techniques, and OptiX makes them fast

Applications benefit immediately from GPU advances:

- Highly scalable on cores and GPUs SLI not required
- GPU advances GF100 is 2-4X of GT200 which is 2X of G80
- OptiX advances 2.1 (this week) +30 to 80% faster than 2.0

ambient occlusion

implicit surfaces

OptiX[™] - SDK Examples

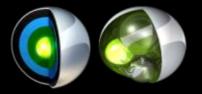
- Whitted
- Cook
- Photon Mapping
- Glass
- Fish Tank
- Collision Detection
- Modified SDK Example MandleBulb
- Fast AO

OptiX[™] -Example Customers +3k downloads / version

LIGHTWORKS Rendering Realism

Privately at major companies doing:

- Radiation & Magnetic Reflection
- Acoustics and Ballistics
- Multi-Spectral Simulation
- Motion Picture production
- Massive On-Line Player Games



NEED FOR SPEED 12

NVIDIA Design Garage Demo

- Photorealistic car configurator in the hands of millions of consumers
- Uses pure GPU ray tracing
 - 3-4X faster on GF100 than on GT200
 - Linear scaling over GPUs & CUDA Cores
 - Est. 40-50X faster vs. a CPU core
- Built on SceniX with OptiX shaders
 similar to other apps in development
- Rendering development speed
 - 6 weeks

Application Engine Availability

iray[®] from mental images

World's first commercial, physically correct, interactive global illumination renderer - greatly speeding the creative workflow for designers with intuitive results that match the real world.

Scalable across processors and nodes for maximum interactivity. Many times faster on GPUs than CPU.

Availability:

- w/ mental ray® 3.8 & RealityServer
- stand-alone Integrator Edition
- Coming to SceniX in 2011
- Integrated in Bunkspeed Shot,
 Autodesk 3ds Max 2011, DS Catia v6

About mental images

mental images®

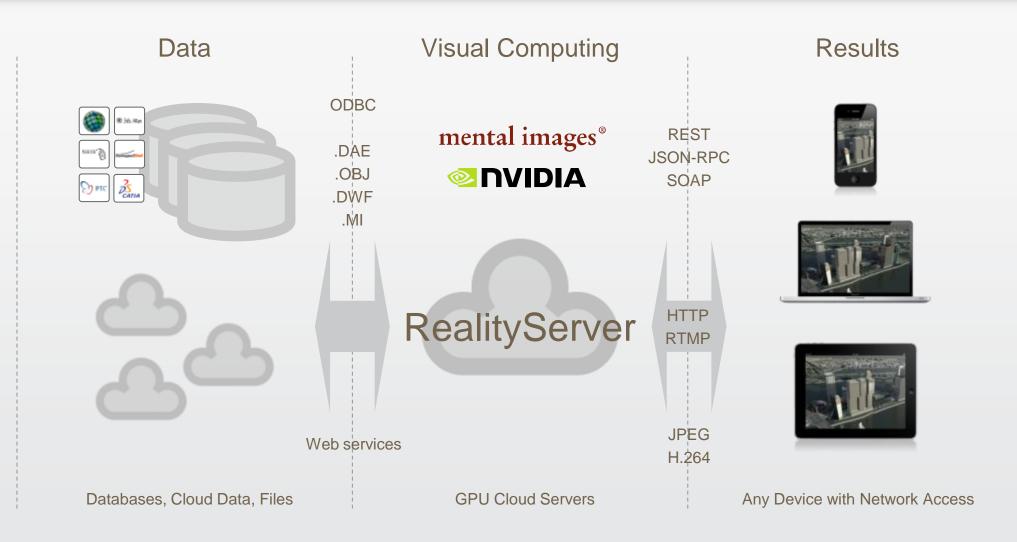
mental images®

Worldwide Leader in Photorealistic Rendering

Mercedes-Benz

ULASEUM

STANFORD UNIVERSITY


iray®

iray is the new CUDA-accelerated rendering mode inside mental ray 3.8, RealityServer 3.0 and other products.

- See full global illumination effects in seconds
- Quickly preview final frame quality in selected image areas
- Work without learning render-specific parameters
- Render final frames with complex global illumination
 effects much faster than CPU renderers
- Less overhead from tuning scenes and shaders

RealityServer[®]

mental images®

RealityServer[®]

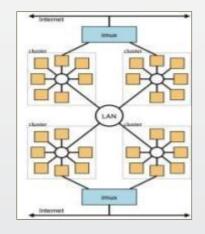
The server based architecture of RealityServer give the following key advantages over traditional client-side technologies:

- Independence from Data Complexity
- Thin Clients
- Collaboration
- Data security
- Scalability
- Development Choice
- State of the art Rendering

GPU Cloud Computing

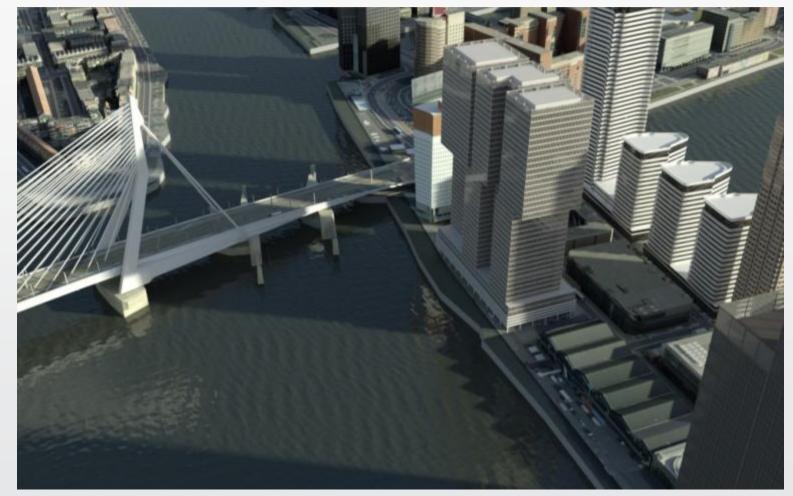
A significant trend is arising towards Cloud Computing for large scale deployments. RealityServer is ideal for Cloud Computing:

- Successfully deployed on:
 - Amazon EC2
 - PEER 1
 - Penguin Computing
- Web Services significantly ease communication with other Cloud resources or off-Cloud resources
- Straightforward way to scale with RealityServer resource requirements



DiCE™ Distributed Computing Environment

RealityServer is built on our proprietary DiCE technology. It is ideally suited to Cloud based deployments:


- Master-less self-organizing cluster architecture
- Fault-tolerant in-memory distributed database
- Automated load balancing across resources (CPUs, GPUs)
- Dynamically add and remove computing resources
- Large scale clustering over GbE and 10GbE networks
- Multi-user by design
- Targeting very low latencies and large numbers of jobs
- Cloud specific clustering modes for Unicast only networks

mental images®

Thank you!

• Questions?

