
GPU Ray Tracing
at the Desktop and in the Cloud

Phillip Miller, NVIDIA

Ludwig von Reiche, mental images

Ray Tracing – has always had an appeal

Ray Tracing Prediction

The future of interactive graphics
is ray tracing….

And it always will be :)

GPUs are making that “future”
look much closer…

Realism versus Interaction – a Constant

For all visual industries, realism is most often the goal

In Film FX – realism typically more important than time

Innovation decreases time

Increasing realism most often consume time gains

In Games and Design – time more important than realism

Realism increases as real-time is maintained

Design requires at least 5 to 10 FPS

Games requires 30 or 60 FPS (now 120 FPS in stereo)

© 2010

R
e

al
is

m

1
seconds

60
frames per second

1
minutes

1
hour

1
day

30 15 +1
days

5 30 155 12632 510

games design

Film FX

Realism/Time Speed/Node: Baseline

NVIDIA’s permission required before redistributing © 2010

R
e

al
is

m

1
seconds

60
frames per second

1
minutes

1
hour

1
day

30 15 +1
days

5 30 155 12632 510

Ray Tracing “plateau”

games design

Film FX

Realism/Time Speed/Node: GPU & Shaders

NVIDIA’s permission required before redistributing © 2010

Real-Time State of the Art

Real-Time State of the Art

R
e

a
l-

T
im

e
 S

ta
te

 o
f

th
e

 A
rt

Real-Time State of the Art

Real-Time State of the Art

R
e

a
l-

T
im

e
 S

ta
te

 o
f

th
e

 A
rt

What’s behind this level realism

A lot of talent (and time)

using great tools

powered by top end GPUs

with custom shaders (CgFX, HLSL, GLSL)

managed by a real-time scene graph

No Self Reflection

N
o

 G
lo

b
a

l
Il

lu
m

in
a
ti

o
n

C
a

re
fu

l
C

o
m

p
o

s
it

io
n

s

NVIDIA’s permission required before redistributing DeltaGen image courtesy of RTT

© 2010

Today

Limited to Raster Capabilities

Result is tied to the scene

High training & cost

Intense art time

Physically correct

Result works any where

Far less training and cost

Intense computations

Raster

Ray Traced

Tomorrow

NVIDIA’s permission required before redistributing © 2010

Showcase Image courtesy of Autodesk

R
e

al
is

m

1
seconds

60
frames per second

1
minutes

1
hour

1
day

30 15 +1
days

5 30 155 12632 510

Ray Tracing “plateau”

games design

Film FX

Realism/Time Speed/Node: GPU Shaders

NVIDIA’s permission required before redistributing © 2010

R
e

al
is

m

1
seconds

60
frames per second

1
minutes

1
hour

1
day

30 15 +1
days

5 30 155 12632 510

games design

film FX
physically
correct
simulation

interactive
scientific
simulationpre-viz

Realism/Time Speed/Node: GPU Ray Tracing

NVIDIA’s permission required before redistributing © 2010

Interactive Ray Tracing Leadership

SIGGRAPH 2008

30 FPS proof of concept, on shipping hardware

Later published papers on approaches

SIGGRAPH 2009

Debuted the OptiX engine and the iray renderer
OptiX, iray, RealityServer 3 released 3 months later

Early 2010

Design Garage demo in 5 weeks w/ OptiX & SceniX

SIGGRAPH 2010

Numerous GPU rendering solutions on display

iray in Bunkspeed Shot, OptiX a v2

Now
iray in Autodesk 3ds Max 2011, and DS Catia v6

OptiX in Lightworks and numerous private applications

Cloud rendering with iray ready to deploy
© 2010

Public Views on GPU Ray Tracing

3 years ago – A GPU can’t ray trace

2 years ago – NVIDIA can, but we can’t

1 year ago – Now everyone can

This year – Now many are

Next year – You can do it anywhere

NVIDIA Design Garage Demo

Photorealistic car configurator in
the hands of millions of consumers

Uses pure GPU ray tracing
Est. 40-50X faster vs. a CPU core
3-4X faster on GF100 than on GT200
Linear scaling over GPUs & CUDA Cores

Built on SceniX with OptiX shaders
– similar to other apps in development

Rendering development speed
– 5 weeks

Design-Garage-Trailer.mov

GPU Computing Overview

Broad Adoption

Over 250,000,000

installed CUDA-

Architecture GPUs

Over 100,000 GPU

Computing

Developers

Windows, Linux and

MacOS Platforms

supported

GPU Computing

spans HPC to

Consumer

250+ Universities

teaching GPU

Computing on the

CUDA Architecture

GPU Computing Applications

NVIDIA GPU
with the CUDA Parallel Computing Architecture

CUDA
C/C++

OpenCL
Direct

Compute
Fortran

Python,
Java, .NET,

…
Over 90,000
developers

Running in Production
since 2008

SDK + Libs + Visual
Profiler and Debugger

1st GPU demo

Shipped 1st OpenCL
Conformant Driver

Public Availability
(Since April)

Microsoft API for
GPU Computing

Supports all CUDA-
Architecture GPUs
(DX10 and DX11)

PyCUDA

jCUDA

CUDA.NET

OpenCL.NET

PGI Accelerator

PGI CUDA Fortran

NOAA Fortran
bindings

FLAGON

© 2010

Many Programming Approaches in Use

iray CUDA C, C Runtime

finalRender CUDA C, C Runtime

Furry Ball CUDA C, C Runtime

Arion CUDA C, driver API

Octane CUDA C, driver API

V-ray RT GPU OpenCL

OptiX CUDA C, driver API with PTX stitching

Lightworks, etc. CUDA C, OptiX API

Solutions Vary in their GPU Exploitation

Speed-ups vary, but a top end Fermi GPU will typically ray
trace 6 to 15 times faster than on a quad-core CPU

A GPGPU programming challenge is to keep the GPU “busy”

Gains on complex tasks often greater than for simple ones

Particularly evident with multiple GPUs,
where data transfers impact simple tasks more

Can mean the technique needs to be rethought
in how it’s scheduling work for the GPU

OptiX 2.1 example – first tuned for simple, now tuned for
complex, with a 30-80% speed increase

© 2010

GPUCPU

Similarities for today’s GPU Ray Tracing

Performance tends to scale linearly with GPU cores and core clock
for a given GPU generation

Gains between GPU generations will vary per solution

Most scale well across system GPUs, with no need for SLI.

Most solutions can “distribute” rendering,
but only some support “cluster” rendering

Scaling efficiency will vary per solution and/or technique

Entire scene must fit onto the GPU’s memory*
– geometry, textures, and acceleration structures

© 2010

*not a permanent situation

GPU Computing Application Development

Your GPU Ray Tracing Application

CUDA Architecture

Application Acceleration Engines
e.g., OptiX ray tracing engine

Foundation Libraries
Low-level Functional Libraries

Development Environment
Languages, Device APIs, Compilers, Debuggers, Profilers, etc.

© 2010

OEM Renderers (iray)

Accelerating Application Development

App Example: Auto Styling

1. Establish the Scene
= SceniX

2. Maximize interactive quality
+ CgFX + OptiX

3. Maximize production
quality
+ iray

App Example: Ray Tracing Task

1. Prepare your Scene
= your art production path

2. Identify a ray tracing bottleneck
+ OptiX

3. Process the task and merge
e.g., ambient occlusion
e.g., light maps

What Ray Tracing techniques are possible?

Answer: What ever you’d like.

Unbiased rendering is currently a popular approach in
commercial renderers but by no means the only approach

For example:

NVIDIA® OptiX™

the world’s first interactive ray tracing engine

A programmable ray tracing pipeline for accelerating
interactive ray tracing applications – from complete
renderers, to functions, to tasks (collision, acoustics,
signal processing, radiation reflectance, etc.)

You write the ray tracing techniques
– OptiX makes them fast

© 2010

OptiX
for faster and easier ray tracing development

Faster development
• Ray calculations are abstracted to single rays
• State of the art acceleration structures & traversers
• Programmable shaders, surfaces and cameras
• Tight coupling with OpenGL & Direct3D
• GPU issues like load balancing, scheduling, parallelism are all handled.

Flexible use
• Ray payloads can be custom
• Custom intersection goes well beyond triangles
• Not tied to a rendering language, shader model or camera model

Greatly lowers the barrier to entry
• For creating high performance ray tracing
• Developers often saving 50-75% on base effort

– with much higher performance results
© 2010

Hybrid – Increasing Interactive Realism

+ Glossy Reflections

+ Soft Shadows

+ Ambient Occlusion, etc…

• Combined as a Scene Effect

with OGL or D3D

NVIDIA’s permission required before redistributing © 2010

Example: Works Zebra workflow

Example: Works Zebra using the GPU

“on screen, I can see the difference between real-time and offline,
but not between OptiX and offline”
Manager, Toyota Marketing Japan

Interactive Ray Tracing: Lightworks

Interactive Ray Tracing: Bunkspeed Shot™

NVIDIA’s permission required before redistributing © 2010

3ds Max Rendering Revolution Contest

3ds Max Rendering Revolution Contest

3ds Max Rendering Revolution Contest

3ds Max Rendering Revolution Contest

3ds Max Rendering Revolution Contest

*including iray

*

*

NVIDIA’s permission required before redistributing © 2010

End

iray® from mental images
bringing photoreal ray tracing to a product near you

morningafternoonevening

A physically correct and interactive global
illumination renderer.

The perfect choice for those relating to the
real-world (designers, consumers,…)

CUDA-based w/ CPU fallback
(massive delta – not interactive)

Scalable across GPUs & nodes (DICE)

Inclusion Options:

w/ current mental ray and RealityServer

Integrator Edition (for those w/o mental ray)

Option for SceniX (later this year)

Coming to numerous products in 2010

© 2010

iray – in action

NVIDIA’s permission required before redistributing © 2010

GPU Technology Conference (GTC 2010)

September 20-23, 2010 San Jose, CA

Now taking Submissions:

http://www.nvidia.com/object/call_for_submissions.html

With iray, you add or replace a renderer.
Ideal when you want a ready-to-integrate/use photorealistic solution

With OptiX, you accelerate or build a renderer.
OptiX is ideal when you want to accelerate hybrid & custom solutions

Ongoing Focus:

iray – quality, complete solution, perf

OptiX – interaction, flexibility/generality, perf

NVIDIA - assisting GPU ray tracing development wherever it’s desired

iray and OptiX

together addressing the spectrum of rendering needs

© 2010

