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Image-guided RT Planning

Planning CT During Treatment
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MR Image-based RT Planning

• Patients are exposed to radiation during CT imaging
• 0.4 % of cancers were due to CT scanning (Hall et al. 2007)

 not suitable for real-time/daily adaptive RT

• MR-based RT benefits:
• Non-exposure of X-ray radiation
• Superior and multiple tissue contrast compared w/ CT
• Reduced examination time and cost
• Benefits to MR-LINAC



6

Need to estimate CT Image

• CT scan provides Hounsfield units (HU)
• A normalized value of the linear attenuation coefficient
• Essential for dose calculation in radiation treatment planning system (RTPS)
• To consider tissue inhomogeneity

• MRI itself is cannot be directly used for treatment planning
• Estimate CT image (pseudo CT, pCT) from MR image

• Intensity-based & Atlas-based
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Objective
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Dataset

• CT-MR image pairs of 19 glioblastoma patients
• From TCIA (the Cancer Imaging Archive) open medical database
• http://www.cancerimagingarchive.net/

• TCGA-GBM (The Cancer Genome Atlas Glioblastoma Multiforme)
• Multi-institutional data (Henry Ford, UCSF, MDACC, Emory, Duke, …)
• CT, MR, Pathologic sildes, Dx (with genomic data)
• 262 patients, 575 studies w/ 481,158 images (73.5 GB)

• Candidate selection criteria
• Has CT and MR image pairs (interval within 1 month)
• No significant noise/motion artifact

Scarpace, L., Mikkelsen, T., Cha, soonmee, Rao, S., Tekchandani, S., Gutman, D., … Pierce, L. J. 
(2016). Radiology Data from The Cancer Genome Atlas Glioblastoma Multiforme [TCGA-GBM] 
collection. The Cancer Imaging Archive
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pix2pix

• P. Isola et al., Image-to-Image Translation with Conditional 
Adversarial Networks, arXiv: 1611.07004v1
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Conditional Generative Adversarial Network

• G (generator) is a fully connected network
• to generate pseudo CT images G(C, z)

• from a random noise vector z
• under the condition C (corresponding MR image)

• D (discriminator) is a convolutional neural network
• discriminate btw/ an real CT image (ground truth)

and an estimated pseudo-CT image.

• The G tries to minimize objective function against
the D which tries to maximize it (min-max problem)
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Conditional Generative Adversarial Network

G
(generator)

Z ~ N(μ, σ)
random noise

real MR

pseudo CT

real CT

D
(discriminator)

Real
or

Fake
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Examples
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Best case (DSC = 0.986)
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Worst case (DSC = 0.766)
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Discussion and Conclusions

• Generated pseudo-CT images well reconstructed anatomical 
boundaries but there were discrepancies in cavities and eye ball

• Training with more dataset will overcome overfitting and thus 
enhance the quality of pseudo-CT synthesis

• This results showed that our proposed method is feasible for 
predicting pseudo-CT images from their corresponding MR images.

• This technique has a potential to enable us to establish MR-based 
adaptive RT in clinic
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Prostate Cancer Diagnosis
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Gleason Score

• A system of grading prostate
cancer tissue based on how
it looks under a microscope
(pathologic image)

• Range: 2~10
• Indicates how likely it is that

a tumor will spread
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Gleason Grade Group
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Objective

• Find quantitative multi-parametric MRI biomarkers for 
determination of Gleason Grade Group in prostate cancer
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Data

• Total 182 findings (lesions) from 162 cases
• 112 for training set
• 70 for test set (release date w/o truth: Jun 5, 2017)

• 4 sets of MRI scan data
• T2-weighted (axial and sagittal)
• Dynamic contrast-enhanced (DCE)
• Apparent diffusion coefficient (ADC)
• Diffusion weighted imaging (DWI)

• w/ Lesion location (not a mask) and known GGG

Group 1 2 3 4 5

N 36 41 20 8 7

Data imbalance
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MRI Sequences

T2-weig hted (axial) ADCDCE
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Masking

• Manual contouring (Courtesy of Dr. Woo)

T2axial T2sagittal

DCE DWI ADC
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Textural Feature Map

• Calculated textural features of 5x5 image patches for each voxel
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Experiment #1 (ResNet50)

• Trained w/ 7 GTX 1080



27

Result #1

• Validation set test accuracy = ~25 %

• Lack of training data
• Data imbalance

GGG = 1 GGG = 5

contrast correlation

energy

entropy

homogeneity
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Experiment #2 (XGboost)

• Tree-ensemble method
• w/ gradient boosting

Training loss

Complexity of the tree
# of nodes, depth, L2 norm of leaf weights
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1st Order Features

• w/ original images of each MRI sequences
• Derived w/ Intensity volume histogram

• Mean

• SD

• Mean skewness

• Mean kurtosis
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Result #2

• Validation set test accuracy: Around 80%
• (Validation set = 33 % of whole training set)

• w/ all sequences: 31.65 %
• T2ax: 79.35 %
• T2sag: 82.76 %
• ADC: 73.40 %
• DWI: 80.67 %
• DCE: 85.71 %

• Final test result: 0.1022 (quadratic weighted kappa, 0.2772 for 1st place team)

• Achieved 8th highest score (out of 143 participants)
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Discussion and Conclusions

• Data preprocessing was done successfully.
• Data augmentation was needed because of lack of data and 

imbalance among groups.

• In case of ResNet50 model, prediction accuracy was quite low.
• Lack of data and time

• Using XGboost method, we got meaningful prediction accuracy 
around 80 % but not for test data (top 8th)

• For further research, various data augmentation methods and other 
deep learning models can be applied in this problem.
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Traditional Machine Learning

Feature 
Extraction ClassifierINPUT OUTPUT

Make a Program to get desired output from corresponding input data
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Paradigm shift

INPUT OUTPUT

Simply GET a Program (automatically!) with your data
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Data is ALL we need

INPUT PROGRAM

COMPUTER

OUTPUT

INPUT OUTPUT

COMPUTER

PROGRAM
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AI beats medical doctors

Seo et al., Kor J Ophthalmol (2009)

Gulshan et al., JAMA (2016)
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Will AI replace doctors?
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What we expected

Malignancy: high
Spiculation: yes
Calcification: none
…

Probability of being diagnosed with cancer
within a 12 month time frame is 85%

Deep Learning can do this !!
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Data Science Bowl 2017

• Kaggle grand challenge
• Make better lung cancer detection model
• 2017.01.12 ~2017.04.12
• Total 100,000 $ prizes

• Ranked in the top of 2.5 %
• out of 1972 teams
• Accuracy: around 77 %
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ProstatEX2

• Find quantitative multi-parametric MRI biomarkers for 
determination of Gleason Grade Group in prostate cancer 

• Validation set test accuracy: Around 80% (w/ DCE sequence)
• Final test result: 0.1022 (quadratic weighted kappa, 0.2772 for 1st place team)

• Achieved 8th highest score (out of 143 participants)
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Being a detective

• Prediction of being diagnosed w/ cancer within a year
• ONLY with imaging diagnosis

It is a dog

It is a dog, a bulldog. I can see 
dirt on the dog. (S)he will 

probably get sick if the dog
mistakenly swallows something 
while (s)he rolled in a dirty spot.
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AI can do what humans do

Seo et al., Kor J Ophthalmol (2009)

Gulshan et al., JAMA (2016)
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Can we beat Google?

Dr. Hyunseok Min’s PPT

Technique?

DATA!!!
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Can we make Watson for oncology?

0.7 billion $ (약 8천억)

50억원 / year
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Open Innovation

Dr. Hyunseok Min’s PPT
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Again, DATA is all we need

INPUT OUTPUT

COMPUTER

PROGRAM

Image data Ground truth
(Label)

Feature scores of each
solitary pulmonary nodules

By 4 radiologists

1300 patients
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Lack of training data

Medical data

Labeled data

Cleaned data
Abnormal Normal
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Will AI replace doctors?

• I will say NO

• The value of high-quality data will rapidly increase
• Only physicians can make high-quality (reliable) medical data

• AI extends the extent of expertize and gives new perspectives
• w/ commoditization of deep learning tools (like MS words and excel)
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Structural Image  Functional Image ?!?

Paper accepted
@ SASHIMI2017 workshop, MICCAI 2017
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AI has no responsibility
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