

Deep Learning Applications in Medicine: Present and Future Perspectives Based on Experience

2017.10.31 NVIDIA Deep Learning Day

지능정보기술연구원 김휘영 PhD astaria82@gmail.com

Contents

- MR Image based Pseudo-CT Image Synthesis using Conditional Generative Adversarial Network
- MR Image based Gleason Score Classification for Prostate Cancer Patients
- Deep Learning in Medicine

MR Image based Pseudo-CT Image Synthesis using Conditional Generative Adversarial Network

2017.10.31 NVIDIA Deep Learning Day

지능정보기술연구원 김휘영 PhD astaria82@gmail.com

Image-guided RT Planning

Planning CT

During Treatment

MR Image-based RT Planning

- Patients are exposed to radiation during CT imaging
 - 0.4 % of cancers were due to CT scanning (Hall et al. 2007)
 - → not suitable for real-time/daily adaptive RT
- MR-based RT benefits:
 - Non-exposure of X-ray radiation
 - Superior and multiple tissue contrast compared w/ CT
 - Reduced examination time and cost
 - Benefits to MR-LINAC

Need to estimate CT Image

- CT scan provides Hounsfield units (HU)
 - A normalized value of the linear attenuation coefficient
 - Essential for dose calculation in radiation treatment planning system (RTPS)
 - To consider tissue inhomogeneity
- MRI itself is cannot be directly used for treatment planning
- Estimate CT image (pseudo CT, pCT) from MR image

Objective

Dataset

- CT-MR image pairs of 19 glioblastoma patients
 - From TCIA (the Cancer Imaging Archive) open medical database
 - <u>http://www.cancerimagingarchive.net/</u>
 - TCGA-GBM (The Cancer Genome Atlas Glioblastoma Multiforme)
 - Multi-institutional data (Henry Ford, UCSF, MDACC, Emory, Duke, …)
 - CT, MR, Pathologic sildes, Dx (with genomic data)
 - 262 patients, 575 studies w/ 481,158 images (73.5 GB)
 - Candidate selection criteria
 - Has CT and MR image pairs (interval within 1 month)
 - No significant noise/motion artifact

Scarpace, L., Mikkelsen, T., Cha, soonmee, Rao, S., Tekchandani, S., Gutman, D., … Pierce, L. J. (2016). Radiology Data from The Cancer Genome Atlas Glioblastoma Multiforme [TCGA-GBM] collection. The Cancer Imaging Archive

pix2pix

• P. Isola *et al.*, Image-to-Image Translation with Conditional Adversarial Networks, arXiv: 1611.07004v1

Conditional Generative Adversarial Network

- G (generator) is a fully connected network
 - to generate pseudo CT images G(C, z)
 - from a random noise vector z
 - under the condition C (corresponding MR image)
- D (discriminator) is a convolutional neural network
 - discriminate btw/ an real CT image (ground truth) and an estimated pseudo-CT image.
- The G tries to minimize objective function against the D which tries to maximize it (min-max problem)

$$\mathcal{L}_{cGAN}(G,D) = \mathbb{E}_{x,y \sim p_{data}(x,y)} [\log D(x,y)] + \mathcal{L}_{I}$$

$$\mathbb{E}_{x \sim p_{data}(x), z \sim p_{z}(z)} [\log(1 - D(x,G(x,z)))], \quad \text{Our}$$
(1)

Conditional GAN (Mirza & Osindero, 2014)

AI RI 지능정보기술연구원

Conditional Generative Adversarial Network

AI RI 지능정보기술연구원

Examples

Best case (DSC = 0.986)

MR

pseudo CT

real CT (ground truth)

Worst case (DSC = 0.766)

real CT (ground truth)

MR

Discussion and Conclusions

- Generated pseudo-CT images well reconstructed anatomical boundaries but there were discrepancies in cavities and eye ball
- Training with more dataset will overcome overfitting and thus enhance the quality of pseudo-CT synthesis
- This results showed that our proposed method is feasible for predicting pseudo-CT images from their corresponding MR images.
- This technique has a potential to enable us to establish MR-based adaptive RT in clinic

Acknowledgement

- 서울대학교 융합과학기술대학원 예성준 교수님
- 분당서울대병원 영상의학과 이경준 교수님
- 지능정보기술연구원 이광희, 박대영 연구원
- The results shown here are in whole or part based upon data generated by the TCGA Research Network: http://cancergenome.nih.gov/

MR Image based Gleason Score Classification for Prostate Cancer Patients

2017.10.31 NVIDIA Deep Learning Day

지능정보기술연구원 김휘영 PhD astaria82@gmail.com

Prostate Cancer Diagnosis

Gleason Score

- A system of grading prostate cancer tissue based on how it looks under a microscope (pathologic image)
- Range: 2~10
- Indicates how likely it is that a tumor will spread

Gleason Grade Group

Grade Group 1 (Gleason score \leq 6). Only individual discrete well-formed glands

Grade Group 2 (Gleason score 3+4 = 7): Predominantly well-formed glands with lesser component of poorlyformed/fused/cribriform glands

Grade Group 3 (Gleason score 4+3 = 7): Predominantly poorly formed/fused/cribriform glands with lesser component of well-formed glands

Grade Group 4 (Gleason score 4+4 = 8; 3+5 = 8; 5+3 = 8) (1) Only poorly-formed/fused/cribriform glands or (2) predominantly well-formed glands and lesser component lacking glands or (3) predominantly lacking glands and lesser component of well-formed glands

Grade Group 5 (Gleason scores 9-10): Lacks gland formation (or with necrosis) with or without poorly formed/fused/cribriform glands

Epstein JI, Egevad L, Amin MB, Delahunt B, Srigley JR, Humphrey PA, the Grading Committee. The 2014 International Society of Urologic Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma: Definition of grading patterns and proposal for a new grading system. Am J Surg Pathol, (40)244-252, 2016

AI RI 지능정보기술연구원

Objective

• Find quantitative multi-parametric MRI biomarkers for determination of Gleason Grade Group in prostate cancer

Home | Directory | Career Services | Continuing Education | BBS | Contact

Advancing the Science, Education & Professional Practice of Medical Physics

PROSTATEX-2 CHALLENGE

Practice of Medical F

SPIE-AAPM-NCI Prostate MR Gleason Grade Group Challenge

AAPM Public & Media International Medical Physicist Members Students Meetings

The American Association of Physicists in Medicine (AAPM), along with the SPIE (the international society for optics and photonics) and the National Cancer Institute (NCI), will conduct a part 2 "Grand Challenge" on the development of quantitative multi-parametric magnetic resonance imaging (MRI) biomarkers for the determination of Gleason Grade Group in prostate cancer. As part of the 2017 AAPM Annual Meeting, the PROSTATEx-2 Challenge will provide a unique opportunity for participants to compare their algorithms with those of others from academia, industry, and government in a structured, direct way using the same data sets.

Data

- Total 182 findings (lesions) from 162 cases
 - 112 for training set
 - 70 for test set (release date w/o truth: Jun 5, 2017)
- 4 sets of MRI scan data
 - T2-weighted (axial and sagittal)
 - Dynamic contrast-enhanced (DCE)
 - Apparent diffusion coefficient (ADC)
 - Diffusion weighted imaging (DWI)
- w/ Lesion location (not a mask) and known GGG

			I '		
Group	1	2	3	4	5
Ν	36	41	20	8	7
			L L		

Data imbalance

MRI Sequences

AI RI 지능정보기술연구원

Masking

• Manual contouring (Courtesy of Dr. Woo)

Textural Feature Map

• Calculated textural features of 5x5 image patches for each voxel

Experiment #1 (ResNet50)

Result #1

- Validation set test accuracy = $\sim 25 \%$
- Lack of training data
 Data imbalance

Experiment #2 (XGboost)

1st Order Features

- w/ original images of each MRI sequences
- Derived w/ Intensity volume histogram

 $P(I) = \frac{number of pixels with gray level I}{total number of pixels in the region of interest}$

- Mean $mean = E[I] = \sum_{I=0}^{N_g-1} I P(I)$, where N_g is the number of exist gray levels
- SD $SD = \frac{1}{N_q} \sqrt{(I mean)^2}$
- Mean skewness
- $SD = \frac{1}{N_g} \sqrt{(I mean)^2}$ $Skewness = \frac{1}{SD^3} \sum_{I=0}^{N_g 1} (I mean)^3 P(I)$ $Kurtosis = \frac{1}{SD^4} \sum_{I=0}^{N_g 1} (I mean)^4 P(I)$
- Mean kurtosis

Result #2

- Validation set test accuracy: Around 80%
 - (Validation set = 33 % of whole training set)
 - w/ all sequences: 31.65 %
 - T2ax: 79.35 %
 - T2sag: 82.76 %
 - ADC: 73.40 %
 - DWI: 80.67 %
 - DCE: 85.71 %

- Final test result: 0.1022 (quadratic weighted kappa, 0.2772 for 1st place team)
- Achieved 8th highest score (out of 143 participants)

Discussion and Conclusions

- Data preprocessing was done successfully.
- Data augmentation was needed because of lack of data and imbalance among groups.
- In case of ResNet50 model, prediction accuracy was quite low.
 - Lack of data and time
- Using XGboost method, we got meaningful prediction accuracy around 80 % but not for test data (top 8th)
- For further research, various data augmentation methods and other deep learning models can be applied in this problem.

Acknowledgement

- 서울대학교 융합과학기술대학원 예성준 교수님
- 서울대병원 영상의학과 조정연 교수님
- 국군대전병원 영상의학과 우성민 선생님
- 서울대학교 융합과학기술대학원 이지민 연구원
- 조형주 연구원

Deep Learning in Medicine

2017.10.31 NVIDIA Deep Learning Day

지능정보기술연구원 김휘영 PhD astaria82@gmail.com

Traditional Machine Learning

Make a Program to get desired output from corresponding input data

Paradigm shift

Simply GET a Program (automatically!) with your data

Data is ALL we need

AI beats medical doctors

JAMA | Original Investigation | INNOVATIONS IN HEALTH CARE DELIVERY

Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs

Varun Gulshan, PhD; Lily Peng, MD, PhD; Marc Coram, PhD; Martin C. Stumpe, PhD; Derek Wu, BS; Arunachalam Narayanaswamy, PhD; Subhashini Venugopalan, MS; Kasumi Widner, MS; Tom Madams, MEng; Jorge Cuadros, OD, PhD; Ramasamy Kim, OD, DNB; Rajiv Raman, MS, DNB; Philip C. Nelson, BS; Jessica L. Mega, MD, MPH; Dale R. Webster, PhD

Seo *et al.*, Kor J Ophthalmol (2009)

Gulshan et al., JAMA (2016)

Will AI replace doctors?

What we expected

Malignancy: high Spiculation: yes Calcification: none

Probability of being diagnosed with cancer within a 12 month time frame is 85%

Deep Learning can do this !!

Data Science Bowl 2017

- Kaggle grand challenge
 - Make better lung cancer detection model
 - 2017.01.12 ~2017.04.12
 - Total 100,000 \$ prizes

- Ranked in the top of 2.5 %
 - out of 1972 teams
 - Accuracy: around 77 %

Breathe in the Future The 3th annual Data Science Bowl aligns with Vice President Joe Biden's Cancer Moonshot¹⁴⁴ to achieve one of the key strategic goals: unleashing the power of data against lung cancer. Together, we can pit machine learning and artificial intelligence against cancer, advancing

ProstatEX2

• Find quantitative multi-parametric MRI biomarkers for determination of Gleason Grade Group in prostate cancer

- Validation set test accuracy: Around 80% (w/ DCE sequence)
- Final test result: 0.1022 (quadratic weighted kappa, 0.2772 for 1st place team)
- Achieved 8th highest score (out of 143 participants)

Being a detective

- Prediction of being diagnosed w/ cancer within a year
 - ONLY with imaging diagnosis

It is a dog

It is a dog, a bulldog. I can see dirt on the dog. (S)he will probably get sick if the dog mistakenly swallows something while (s)he rolled in a dirty spot.

AI can do what humans do

JAMA | Original Investigation | INNOVATIONS IN HEALTH CARE DELIVERY

Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs

Varun Gulshan, PhD; Lily Peng, MD, PhD: Marc Coram, PhD; Martin C. Stumpe, PhD; Derek Wu, BS; Arunachalam Narayanaswamy, PhD; Subhashini Venugopalan, MS; Kasumi Widner, MS; Tom Madams, MEng; Jorge Cuadros, OD, PhD; Ramasamy Kim, OD, DNB; Rajiv Raman, MS, DNB; Philip C. Nelson, BS; Jessica L. Mega, MD, MPH; Dale R. Webster, PhD

Seo *et al.*, Kor J Ophthalmol (2009)

Gulshan et al., JAMA (2016)

Can we beat Google?

Technique?

auxiliary classifiers

DATA!!!

Characteristics	Development Data Set	EyePACS-1 Validation Data Set 9963	
No. of images	128 175		
No. of ophthalmologists	54	8	
No. of grades per image	3-7	8	
Grades per ophthalmologist, median (interquartile range)	2021 (304-8366)	8906 (8744-9360)	

Dr. Hyunseok Min's PPT

Can we make Watson for oncology?

50억원 / year

News room > News releases > IBM Closes Deal to Acquire Merge Healthcare

0.7 billion \$ (약 8천억)

AI RI 지능정보기술연구원

Open Innovation

			BVLC / caffe	• Watch 1,839	🖈 Star 16,	
			Code () Issues 740 () Pull requests 271 [] P	rojects 0 💷 Wiki 🦟 Pulse 📊 Graphs		
xiv Sanity Preserver User: Pass: Login or Create			Model Zoo Kevin Ke-Yun Lin edited this page 17 days ago - 104 revisions			
ig last 26950 papers from cs.[CV[CL]LG[AI]NE]/stat.ML	So Citta		Check out the model zoo documentation for details.		▼ Pages	
			To acquire a model:		Field a Pa	
most recent top recommended library			 download the model gist by ./scripts/download_model_from_gist.sh <gist_id> <dirname> to load the model metadata, architecture, solver configuration, and so on. (<dirname> is optional and defaults to caffe/models).</dirname></dirname></gist_id> 		Home AWS EC2 (
Only show v1 Last day Last 3 days Last week Last month Last year All time			2. download the model weights by ./scripts/download_model_binary.py (model_dir> where AMI		AMI	
op papers based on people's libraries;	C Features Explore Pricing		<pre><model_dir> is the gist directory from the first step. </model_dir></pre>	ctions	Borrowin	
tNet: Differentiable Optimization as a Layer in Neural Networks	readers explore Finang		Berkeley-trained models 7 Caff Finetuning on Flickr Style: same as provided in models/, but listed here as a Gist for an example. Caff BVLC6 GoogleNet: models/bvlc googlenet Control		Caffe on 7	
Brandon Amos, J. Zico Kolter 3/1/2017 cs.LG.[cs.A.] math.OC.[stat.ML	OpenAl openai				Caffe Ou solverst	
					Contribu	
	Repositories		Network in Network model The Network in Network model is described in the followi	ng ICLR-2014 paper:	Excludin Phase	
his paper presents OptNet, a network architecture that integrates optimization problems (here, specifical)	Pinned repositories		Network In Network		Faster Ci Fine Tun	
This paper present optived, a version activities data encode that integrates optimization problems (neis) specifical individual layers in larger end-to-end trainable deep networks. These layers allow complex dependencies betw traditional convolutional and fully-connected layers are not able to capture. In this paper, we develop the f derive the equations to perform exact differentiation through these layers and with respect to layer parameter these layers that exploits fast GPU-based batch solves within a primal-dual interior point method, and which virtually no additional cost on top of the solve; and we highlight the application of these approaches in sever example, we show that the method is capable of learning to play Sudoku given just input and output games. w of the game; this task is virtually impossible for other neural network architectures that we have experimente capabilities of our approach.	reinforcement learning algorithms. training an/#c's ge	universe	M. Lin, Q. Chen, S. Yan International Conference on Learning Representations, 2014 (arXiv:1409.1556)		Layers E	
		Universe:raisiftware platform for measuring and training:an/l&'s general intelligence across the wor supply:of/ganes, websites and other applications.			A 16	
Learning to Optimize Neural Nets Ke Li, Jitendra Malik 31/2017 cs LG cs Al math OC stat ML 10 pages. 15 figures	● Python 🔺 5k 😵 1k	● Pythion ★ 4.8k ¥ 452	● Python 🖈 718 😵 218			
	improved-gan code for the paper "Improved Techniques for	kubernetei-ec2-autoscaler A bathkoptinized scaling manager for Kubernete	universe-starter-agent s A starter agent that can solve a number of universe			
	Training GANs" Python ★ 624 153 	Python \$351 \$41	environments. Python ★ 495 ¥ 130			
	- 190000 - 1024 - 8 233	- charlost - 2.27 - 2.47		Dr. Hyunseok Min's I	PPT	

Again, DATA is all we need

Lack of training data

AI RI 지능정보기술연구원

Will AI replace doctors?

I will say NO

- The value of high-quality data will rapidly increase
 - Only physicians can make high-quality (reliable) medical data
- All extends the extent of expertize and gives new perspectives
 - w/ commoditization of deep learning tools (like MS words and excel)

Structural Image → Functional Image ?!?

Virtual PET Images from CT Data Using Deep Convolutional Networks: Initial Results

Avi Ben-Cohen¹, Eyal Klang², Stephen P. Raskin², Michal Marianne Amitai², and Havit Greenspan¹

¹Tel Aviv University, Faculty of Engineering, Department of Biomedical Engineering, Medical Image Processing Laboratory, Tel Aviv 69978, Israel
²Sheba Medical Center, Diagnostic Imaging Department, Abdominal Imaging Unit, affiliated to Sackler school of medicine Tel Aviv University, Tel Hashomer 52621, Israel

Paper accepted @ SASHIMI2017 workshop, MICCAI 2017

AI RI 지능정보기술연구원

AI has no responsibility

Thank you for your attention

2017.10.31 NVIDIA Deep Learning Day

지능정보기술연구원 김휘영 PhD astaria82@gmail.com